A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era
Abstract
:1. Introduction
- We propose a FiWi access network architecture based on a seamless integration paradigm of a multi-hop wireless mesh network (WMN) frontend and TWDM-PON backhaul. Then, to ensure the quality of service (QoS) characteristics and PSM formulation, we leverage the future-proof time-division multiplexed access (TDMA) scheme to jointly synchronize the DBA process. Meanwhile, we analyze the energy harvesting and conversion in the ONU module in detail.
- We apply the service-oriented DBA scheme to quantify timeslot allocation occupied by the active and sleep state of the ONU-MPP. In PoF-enabled energy supply, we investigate the energy-aware transmitted optical power scheme to achieve the minimum energy consumption, which can be adjusted to the optimum level.
- Given the minimized energy consumption and acceptable data communication delay, we derivate the mean tolerant end-to-end traffic delay over the envisioned FiWi access network, and the bridge of the correlation function between the QoE value and transmitted optical power.
2. Related Work of Energy Conservation over FiWi Network
3. PoF-Enabled Energy Supply Paradigm over FiWi Access Network
4. Problem Formulation of Energy Consumption Minimization
4.1. Joint Bandwidth Allocation and Power-Saving Method
4.2. PoF Technology-Enabled Power Supply
4.3. Correlation between Multi-Hops and QoE Value
5. Numerical Analysis and Discussion
5.1. Parameter Settings
5.2. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vereecken, W.; Heddeghem, W.V.; Deruyck, M.; Puype, B.; Lannoo, B.; Joseph, W.; Colle, D.; Martens, L.; Demeester, P. Power Consumption in Telecommunication Networks: Overview and Reduction Strategies. IEEE Commun. Mag. 2011, 49, 62–69. [Google Scholar] [CrossRef]
- Fu, S.; Wen, H.; Wu, J.; Wu, B. Cross-Networks Energy Efficiency Tradeoff: From Wired Networks to Wireless Networks. IEEE Access 2017, 5, 15–26. [Google Scholar] [CrossRef]
- Marcus, M. 5G and “IMT for 2020 and beyond”. IEEE Wirel. Commun. 2015, 22, 2–3. [Google Scholar] [CrossRef]
- Maier, M.; Levesque, M.; Ivanescu, L. NG-PONs 1&2 and Beyond: The Dawn of the Uber-FiWi Network. IEEE Netw. 2012, 26, 15–21. [Google Scholar]
- Aurzada, F.; Levesque, M.; Maier, M.; Reisslein, M. FiWi Access Networks Based on Next-Generation PON and Gigabit-Class WLAN Technologies: A Capacity and Delay Analysis. IEEE/ACM Trans. Netw. 2014, 22, 1176–1189. [Google Scholar] [CrossRef]
- Sarkar, S.; Yen, H.H.; Dixit, S.; Mukherjee, B. Hybrid Wireless Optical Broadband Access Network (WOBAN): Network Planning using Lagrangean Relaxation. IEEE/ACM Trans. Netw. 2009, 17, 1094–1105. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Y.; Peng, P.; Wang, H.; Chang, G. A Full Field-of-View Self-Steering Beamformer for 5G mm-Wave Fiber-Wireless Mobile Fronthaul. J. Lightwave Technol. 2020, 38, 1221–1229. [Google Scholar] [CrossRef]
- Dat, P.T.; Kanno, A.; Yamamoto, N.; Kawanishi, T. Seamless Convergence of Fiber and Wireless Systems for 5G and Beyond Networks. J. Lightwave Technol. 2019, 37, 592–605. [Google Scholar] [CrossRef]
- Van, D.P.; Rimal, B.P.; Chen, J.; Monti, P.; Wosinska, L.; Maier, M. Power-Saving Methods for Internet of Things over Converged Fiber-Wireless Access Networks. IEEE Commun. Mag. 2016, 54, 166–175. [Google Scholar] [CrossRef]
- Maier, M.; Levesque, M. Dependable Fiber-Wireless (FiWi) Access Networks and Their Role in a Sustainable Third Industrial Revolution Economy. IEEE Trans. Reliab. 2014, 63, 386–400. [Google Scholar] [CrossRef]
- Sarigiannidis, A.G.; Iloridou, M.; Nicopolitidis, P.; Papadimitriou, G.; Pavlidou, F.-N.; Sarigiannidis, P.G.; Louta, M.D.; Vitsas, V.; Antonios, S.; Maria, I.; et al. Architectures and Bandwidth Allocation Schemes for Hybrid Wireless-Optical Networks. IEEE Commun. Surv. Tut. 2015, 17, 427–468. [Google Scholar] [CrossRef]
- Hou, W.; Ning, Z.; Guo, L. Green Survivable Collaborative Edge Computing in Smart Cities. IEEE Trans. Ind. Inform. 2018, 14, 1594–1605. [Google Scholar] [CrossRef]
- Van, D.P.; Rimal, B.P.; Andreev, S.; Tirronen, T.; Maier, M. Machine-to-Machine Communications Over FiWi Enhanced LTE Networks: A Power-Saving Framework and End-to-End Performance. J. Lightwave Technol. 2016, 34, 1062–1071. [Google Scholar] [CrossRef]
- Raavi, S.; Andrade, M.D.; Fiandra, R.; Tornatore, M. Energy-efficient Design and Equipment Placement for Wireless Optical Broadband Access Networks. In Proceedings of the 2012 IEEE Online Conference on Green Communications (GreenCom), Piscataway, NJ, USA, 25–28 September 2012; pp. 1–6. [Google Scholar]
- Van, D.P.; Rimal, B.P.; Maier, M.; Valcarenghi, L. ECO-FiWi: An Energy Conservation Scheme for Integrated Fiber-Wireless Access Networks. IEEE Trans. Wirel. Commun. 2016, 15, 3979–3994. [Google Scholar] [CrossRef]
- Chowdhury, P.; Tornatore, M.; Sarkar, S.; Mukherjee, B. Building a Green Wireless Optical Broadband Access Network (WOBAN). J. Lightwave Technol. 2010, 28, 2219–2229. [Google Scholar] [CrossRef]
- Coimbra, J.; Schtz, G.; Correia, N. Network Game based Routing for Energy Efficient Fibre-Wireless Access Networks. In Proceedings of the IEEE International Conference on Communications, Ottawa, ON, Canada, 10–15 June 2012; pp. 1958–1963. [Google Scholar]
- Kantarci, B.; Naas, N.; Mouftah, H. Energy-efficient DBA and QoS in FiWi networks constrained to metro-access convergence. In Proceedings of the 14th International Conference on Transparent Optical Networks, Dalian, China, 24–27 August 2012; pp. 1–4. [Google Scholar]
- Schutz, G.; Correia, N. Design of QoS-aware Energy-efficient Fiber Wireless Access Networks. IEEE/OSA J. Opt. Commun. Netw. 2012, 4, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Hou, W.; Guo, L.; Zhang, L. Dynamic Energy-saving Algorithm in Green Hybrid Wireless Optical Broadband Access Network. Optik 2012, 124, 1874–1881. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Fadlullah, Z.M.; Kato, N. Energy Consumption Minimization for FiWi Enhanced LTE-A HetNets with UE Connection Constraint. IEEE Commun. Mag. 2016, 54, 56–62. [Google Scholar] [CrossRef]
- Guo, H.; Liu, J.; Fadlullah, Z.M.; Kato, N. On Minimizing Energy Consumption in FiWi Enhanced LTE-A HetNets. IEEE Trans. Emerg. Top. Comput. 2018, 6, 579–591. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmad, I.; Habibi, D. Service Class Resource Management for Green Wireless-Optical Broadband Access Networks (WOBAN). J. Lightwave Technol. 2015, 33, 7–18. [Google Scholar] [CrossRef]
- Miyanabe, K.; Rodrigues, T.G.; Lee, Y.; Nishiyama, H.; Kato, N. An Internet of Things Traffic-Based Power Saving Scheme in Cloud-Radio Access Network. IEEE Internet Things J. 2019, 6, 3087–3096. [Google Scholar] [CrossRef]
- Suto, K.; Miyanabe, K.; Nishiyama, H.; Kato, N.; Ujikawa, H.; Suzuki, K.-I. QoE-Guaranteed and Power-Efficient Network Operation for Cloud Radio Access Network with Power Over Fiber. IEEE Trans. Comput. Soc. Syst. 2015, 2, 127–136. [Google Scholar] [CrossRef]
- Miyanabe, K.; Suto, K.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N.; Ujikawa, H.; Suzuki, K.-I. A cloud radio access network with power over fiber toward 5G networks: QoE-guaranteed design and operation. IEEE Wirel. Commun. 2015, 22, 58–64. [Google Scholar] [CrossRef]
- Togashi, K.; Nishiyama, H.; Kato, N.; Ujikawa, H.; Suzuki, K.-I.; Yoshimoto, N. Cross Layer Analysis on ONU Energy Consumption in Smart FiWi Networks. IEEE Wirel. Commun. Lett. 2013, 2, 695–698. [Google Scholar] [CrossRef]
- Han, P.; Guo, L.; Liu, Y.; Hou, J.; Han, X. Joint Wireless and Optical Power States Scheduling for Green Multi-Radio Fiber-Wireless Access Network. J. Lightwave. Technol. 2016, 34, 2610–2613. [Google Scholar] [CrossRef]
- Nishiyama, H.; Togashi, K.; Kawamoto, Y.; Kato, N. A Cooperative ONU Sleep Method for Reducing Latency and Energy Consumption of STA in Smart-FiWi Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2621–2629. [Google Scholar] [CrossRef]
- Fadlullah, Z.M.; Nishiyama, H.; Kato, N.; Ujikawa, H.; Suzuki, K.-I.; Yoshimoto, N. Smart FiWi Networks: Challenges and Solutions for QoS and Green Communications. IEEE Intell. Syst. 2013, 28, 86–91. [Google Scholar] [CrossRef]
- Sarkar, S.; Yen, H.-H.; Dixit, S.; Mukherjee, B. A Novel Delay-aware Routing Algorithm (DARA) for a Hybrid Wireless-Optical Broadband Access Network (WOBAN). IEEE Netw. 2008, 22, 20–28. [Google Scholar] [CrossRef]
- Fiedler, M.; Hossfeld, T.; Tran-Gia, P. A Generic Quantitative Relationship between Quality of Experience and Quality of Service. IEEE Netw. 2010, 24, 36–41. [Google Scholar] [CrossRef] [Green Version]
Parameter | Description | Value |
---|---|---|
Number of integrated ONU-MPPs | 16, 32, 64 | |
Number of STAs associated with ONU-MPP | 4–20 | |
Number of multi-hops | 4–30 | |
US aggregated traffic load | (0, 1) | |
WMN message time | 0.512 μs | |
Guard time between the consecution STA’s subslot | 1–100 μs | |
Polling cycle time | ms | |
, | First- and second-order moments of frame service time | 5.09 μs, 21.44 μs2 |
Propagation delay between OLT and ONU-MPP | 0.1–0.5 ms | |
, | Power consumption in active state | 5552 mW, 505 mW |
Power consumption in sleep state | 758 mW, 750 mW | |
Transmitted optical power of the OLT | W | |
Communication distance between OLT and ONU-MPP | 100 km | |
Photoelectric conversion efficiency | 0.6 | |
Optical fiber attenuation factor | 3 dB/km | |
Link resource utilization between OLT and ONU-MPP | 1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Wang, R. A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era. Sensors 2020, 20, 3794. https://doi.org/10.3390/s20133794
He C, Wang R. A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era. Sensors. 2020; 20(13):3794. https://doi.org/10.3390/s20133794
Chicago/Turabian StyleHe, Chao, and Ruyan Wang. 2020. "A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era" Sensors 20, no. 13: 3794. https://doi.org/10.3390/s20133794
APA StyleHe, C., & Wang, R. (2020). A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era. Sensors, 20(13), 3794. https://doi.org/10.3390/s20133794