Test UHCJ20m—Measurement Procedure Standardization and Metric Characteristics Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Sample
2.2. Test
2.3. Experiment Protocol
2.4. Data Processing Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Metikoš, D.; Prot, F.; Hofman, E.; Pintar, Ž.; Oreb, G. Mjerenje Bazičnih Motoričkih Dimenzija Sportaša (Athletes’ Basic Motor Dimensions Measurement); Fakultet za fizičku kulturu Sveučilišta u Zagrebu: Zagreb, Croatia, 1989; p. 141. [Google Scholar]
- Nikolaidis, P.T.; Gkoudas, K.; Afonso, J.; Clemente-Suarez, V.J.; Knechtle, B.; Kasabalis, S.; Kasabalis, A.; Douda, H.; Tokmakidis, S.; Torres-Luque, G. Who jumps the highest? Anthropometric and physiological correlations of vertical jump in youth elite female volleyball players. J. Sports Med. Phys. Fit. 2017, 57, 802–810. [Google Scholar]
- Aouadi, R.; Chedly, M.; Khalifa, R.; Hermassi, S.; Souhaiel Chelly, M.; Van Den Tillar, R.; Gabbett, T. Association of anthropometric qualities with vertical jump performance in elite male volleyball players. J. Sports Med. Phys. Fit. 2012, 51, 11–17. [Google Scholar]
- Sheppard, J.; Borgeaud, R.; Strugnel, A. Influence of stature on movement speed and repeated efforts in elite volleyball players. J. Aust. Strength Cond. 2008, 16, 12–14. [Google Scholar]
- Ugarkovic, D.; Matavulj, D.; Kukolj, M.; Jaric, S. Standard anthropometric, body composition, and strength variables as predictors of jumping performance in elite junior athletes. J. Strength Cond. Res. 2002, 16, 227–230. [Google Scholar]
- Vučetić, V.; Sukreški, M.; Sporiš, G. Izbor adekvatnog protokola testiranja za procjenu aerobnog i anaerobnog energetskog kapaciteta (The Choice of Adequate Testing Protocol for Aerobic and Anaerobic Energy Capacity Assessment). In Proceedings of the 11. Kondicijska priprema sportaša, Zagreb, Croatia, 22–23 February 2013; Jukić, I., Milanović, D., Eds.; Kineziološki fakultet u Zagrebu, Zagrebački športski savez, Udruga kondicijskih trenera Hrvatske: Zagreb, Croatia, 2013; pp. 99–110. [Google Scholar]
- Perez-Landaluce, J.; Rodríguez-Alonso, M.; Fernández-García, B.; Bustillo-Fernández, E.; Terrados-Cepeda, N. Importance of wash riding in kayaking training and competition. Med. Sci. Sports Exerc. 1998, 30, 1721–1724. [Google Scholar] [CrossRef]
- Sekulić, D. Analiza stanja i transformacijski postupci u kineziologiji (The Analysis of Condition and Transformational Procedures in Kinesiology), 1st ed.; Kineziološki Fakultet u Splitu: Split, Croatia, 2016. [Google Scholar]
- Haugen, T.A.; Tønnessen, E.; Svendsen, I.S.; Seiler, S. Sprint time differences between single-and dual-beam timing systems. J. Strength Cond. Res. 2014, 28, 2376–2379. [Google Scholar] [CrossRef] [Green Version]
- Dolenec, A.; Čoh, M. Comparison of photocell and optojump measurements of maximum running velocity. Kinesiol. Slov. 2009, 15, 16–24. [Google Scholar]
- Links. FinishLynx Photo-Finish Timing Software. Available online: https://www.finishlynx.com/product/software/finishlynx-results-software/ (accessed on 25 June 2020).
- Sun, C.I.; Huang, J.T.; Weng, S.C.; Chien, M.F. City Marathon active timing system using bluetooth low energy technology. Electronics 2019, 8, 252. [Google Scholar] [CrossRef] [Green Version]
- Paek, M.; Leem, C.; Bae, D. Multiple reader algorithm for sports timing systems and its application at low frequency bandwidth. China Commun. 2013, 10, 16–24. [Google Scholar] [CrossRef]
- Barbero-Álvarez, J.C.; Coutts, A.; Granda, J.; Barbero-Álvarez, V.; Castagna, C. The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J. Sports Sci. Med. 2010, 13, 232–235. [Google Scholar] [CrossRef]
- Waldron, M.; Worsfold, P.; Twist, C.; Lamb, K. Predicting 30 m timing gate speed from a 5 Hz Global Positioning System (GPS) device. Int. J. Perform. Anal. Sport 2011, 11, 575–582. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Houser, J.J.; Briney, B.B.; Williams, T.B.; Piper, F.C.; Brechue, W.F. Comparison between hand and electronic timing of 40-yd dash performance in college football players. J. Strength Cond. Res. 2010, 24, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.B.; Ivey, P.J.; Brechue, W.F.; Mayhew, J.L. Validity and reliability of hand and electronic timing for 40-yd sprint in college football players. J. Strength Cond. Res. 2015, 29, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Hetzler, R.K.; Stickley, C.D.; Lundquist, K.M.; Kimura, I.F. Reliability and accuracy of handheld stopwatches compared with electronic timing in measuring sprint performance. J. Strength Cond. Res. 2008, 22, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Marković, G.; Dizdar, D.; Jukić, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [PubMed]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; Klerk, M. Single-leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef]
- Meylan, C.M.P.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J. Sports Sci. 2010, 28, 545–554. [Google Scholar] [CrossRef]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar]
- Young, W.B.; James, R.; Montgomery, I. Is muscle power related to running speed with changes of direction? J. Sports Med. Phys. Fit. 2002, 42, 282–288. [Google Scholar]
- Young, W.; McLean, B.; Ardagna, J. Relationship between strength qualities and sprinting performance. J. Sports Med. Phys. Fit. 1995, 35, 13–19. [Google Scholar]
- Habibi, W.; Shabani, M.; Rahimi, E.; Fatemi, R.; Najafi, A.; Analoei, H.; Hosseini, M. Relationship between jump test results and acceleration phase of sprint performance in national and regional 100 m sprinters. J. Hum. Kin. 2010, 23, 29–35. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J. Developing explosive muscular power: Implications for mixed methods training strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Asadi, A. Relationship between jumping ability, agility and sprint performance of elite young basketball players: A field-test approach. Rev. Bras. Cineantropom Desempenho Hum. 2016, 18, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: Reliability, symmetry, discriminative and predictive ability. Phys. Ther. Sport 2005, 6, 74–82. [Google Scholar] [CrossRef]
- Schuster, D.; Jones, P.A. Relationships between unilateral horizontal and vertical drop jumps and 20 meter sprint performance. Phys. Ther. Sport 2016, 21, 20–25. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.W.; Walkekr, J.L.; Langford, G.A.; Kutz, M.R.; Guerrero, J.M.; McMillan, J. The relationship between kinematic determinants of jump and sprint performance in division I women soccer players. J. Strength Cond. Res. 2010, 24, 3200–3208. [Google Scholar] [CrossRef]
- Dobbs, C.W.; Gill, N.D.; Smart, D.J.; Mcguigan, M.R. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J. Strength Cond. Res. 2015, 29, 661–671. [Google Scholar] [CrossRef]
- Gokeler, A.; Welling, W.; Zaffagnini, S.; Seil, R.; Padua, D. Development of a test battery to enhance safe return to sports after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Ebert, J.R.; Edwards, P.; Currie, J.; Smith, A.; Joss, B.; Ackland, T.; Buelow, J.U.; Hewitt, B. Comparison of the ‘back in action’ test battery to standard hop tests and isokinetic knee dynamometry in patients following anterior cruciate ligament reconstruction. Int. J. Sports Phys. Ther. 2018, 13, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Kise, N.J.; Roos, E.M.; Stensrud, S.; Engebretsen, L.; Risberg, M.A. The 6-m timed hop test is a prognostic factor for outcomes in patients with meniscal tears treated with exercise therapy or arthroscopic partial meniscectomy: A secondary, exploratory analysis of the Odense-Oslo meniscectomy versus exercise (OMEX) trial. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2478–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahamonde, R.; Weyer, J.; Velotta, J.; Middleton, A. Effects of leg dominance on the single leg hop functional test in non-injured adults. In Proceedings of the 30th Annual Conference of Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012; Bradshaw, E.J., Burnett, A., Hume, P.A., Eds.; ISBS Proceedings Archive: Melbourne, Australia, 2012; pp. 31–34. [Google Scholar]
- Maulder, P.S.; Bradshaw, E.J.; Keogh, J. Jump Kinetic determinants of sprint acceleration performance from starting blocks in male sprinters. J. Sports Sci. Med. 2006, 5, 359–366. [Google Scholar] [PubMed]
- Lockie, R.G.; Stage, A.A.; Stokes, J.J.; Orjalo, A.J.; Davis, D.L.; Giuliano, D.V.; Moreno, M.R.; Risso, F.G.; Lazar, A.; Birmigham-Babauta, S.A.; et al. Relationships and predictive capabilities of jump assessments to soccer-specific field test performance in division I collegiate players. Sports 2016, 4, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, D.J.; Stablom, M.; Keogh, J.W.L.; Cronin, J. Relationship between the kinetics and kinematics of unilateral horizontal drop jump to sprint performance. J. Strength Cond. Res. 2008, 22, 1589–1596. [Google Scholar] [CrossRef]
- Agar-Newman, D.J.; Klimstra, M.D. Efficacy of horizontal jumping tasks as a method for talent identification of female rugby players. J. Strength Cond. Res. 2015, 29, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Maćkala, K.; Fostiak, M.; Kowalski, K. Selected determinants of acceleration in the 100 m sprint. J. Hum. Kinet. 2015, 5, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Babić, V. Mogućnosti Otkrivanja Za Sprint Nadarenih Djevojčica (Possibilities of Detecting Girls Talented for Sprint). Master’s Thesis, Fakultet za fizičku kulturu Sveučilišta u Zagrebu, Zagreb, Croatia, 4 October 2001. [Google Scholar]
- Yanci, J.; Los Arcos, A.; Mendiguchia, J.; Brughelli, M. Relationships between sprinting, agility, one- and two-leg vertical and horizontal jump in soccer players. Kinesiology 2014, 46, 194–201. [Google Scholar]
- Dizdar, D. Kvantitativne metode/Quantitative Methods, 1st ed.; Kineziološki Fakultet Zagreb: Zagreb, Croatia, 2006. [Google Scholar]
- Vale, C. 5 Jumps Tests that Transfer to Speed. Available online: https://www.freeleapusa.com/5-jump-test-that-transfer-to-speed/ (accessed on 25 June 2020).
Test: 20-m Unilateral Horizontal Cyclic Jumps | |
---|---|
TEST CODE | UHCJ20m |
MEASUREMENT PURPOSE | Explosive Strength of Legs (Elastic Strength) |
NECESSARY EQUIPMENT |
|
TEST EXECUTION DESCRIPTION | The subject is stands behind the start line in the position for a standing start with one leg nearer to the start line. After the measurer’s command “On your marks” and the start signal, the subject begins and the task execution and sets off with the front leg and by the alternate arm swing (not simultaneous). The subject covers the distance in the shortest possible time using the same leg jumps. Correctness criteria: the task execution begins only after the start signal and the task is completed via the marked distance to the finish line by jumping on the same one leg using the alternate arm swings. The task is executed three times. Active rest intervals (stretching and light jogging) between the attempts should ensure full recovery of the participant. |
INSTRUCTIONS TO SUBJECTS | The task is demonstrated and elaborated: “This is a test used to assess explosive strength of the legs. Your goal is to cover the 20 m distance using unilateral jumps in the shortest possible time starting from the standing start position and setting off with the front leg in the start position after the measurer’s command “On your marks” and the start signal. You can use alternate arm swings (as in running). Try to find your best balance between your jump length and the frequency in your efforts to attain the greatest speed of movement possible. |
RESULTS DETERMINATION | The result is time needed to cover the 20 m distance using unilateral horizontal cyclic jumps. The task is performed three times. The best attempt is recorded as the test outcome. (If any a sophisticated additional equipment is employed in a laboratory, the kinematic measures such as the jump length and the jump frequency, speed of movement, number of jumps, etc. are used along with the end results). The result is expressed in tenths of a second. |
N = 31/Variable | M | Min | Max | V | SD | Skew | Kurt | Max D |
---|---|---|---|---|---|---|---|---|
UHCJ20m1 (s) | 5.22 | 4.39 | 6.63 | 0.19 | 0.44 | 1.13 | 2.62 | 0.07 |
UHCJ20m2 (s) | 5.08 | 4.38 | 6.35 | 0.16 | 0.40 | 0.84 | 2.42 | 0.05 |
UHCJ20m3 (s) | 5.10 | 4.19 | 6.52 | 0.20 | 0.44 | 0.83 | 2.74 | 0.04 |
UHCJ20m1-3 (s) | 5.14 | 4.32 | 6.50 | 0.17 | 0.41 | 1.09 | 3.35 | 0.10 |
Variable | UHCJ20m1 | UHCJ20m2 | UHCJ20m3 |
---|---|---|---|
UHCJ20m1 | 1.000 | ||
UHCJ20m2 | 0.874 * | 1.000 | |
UHCJ20m3 | 0.848 * | 0.906 * | 1.000 |
M±SD | AVR | Cronbach α | ICC | SEM | CV (%) | |
UHCJ20m(s) | 5.14 ± 0.41 | 0.88 | 0.95 | 0.94 | 0.09 | 1.8 |
M±SD | Itm-Tot. Correlation | Alpha If Deleted | ||||
UHCJ20m1(s) | 5.22 ± 0.44 | 0.88 | 0.95 | |||
UHCJ20m2(s) | 5.08 ± 0.40 | 0.93 | 0.92 | |||
UHCJ20m3(s) | 5.10 ± 0.44 | 0.90 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolenec, A.; Milinović, I.; Babić, V.; Dizdar, D. Test UHCJ20m—Measurement Procedure Standardization and Metric Characteristics Determination. Sensors 2020, 20, 3971. https://doi.org/10.3390/s20143971
Dolenec A, Milinović I, Babić V, Dizdar D. Test UHCJ20m—Measurement Procedure Standardization and Metric Characteristics Determination. Sensors. 2020; 20(14):3971. https://doi.org/10.3390/s20143971
Chicago/Turabian StyleDolenec, Aleš, Ivan Milinović, Vesna Babić, and Dražan Dizdar. 2020. "Test UHCJ20m—Measurement Procedure Standardization and Metric Characteristics Determination" Sensors 20, no. 14: 3971. https://doi.org/10.3390/s20143971
APA StyleDolenec, A., Milinović, I., Babić, V., & Dizdar, D. (2020). Test UHCJ20m—Measurement Procedure Standardization and Metric Characteristics Determination. Sensors, 20(14), 3971. https://doi.org/10.3390/s20143971