Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Measurements
2.3. Proposed Canopy Volume Parameter (CVP)
2.4. Image Processing Method
2.4.1. Image Segmentation Method
2.4.2. Vegetation Indices Calculations
2.5. Model Construction and Evaluation
2.5.1. Different Modelling Methods for the CVP
2.5.2. Random Forest (RF) Modelling
2.5.3. Model Evaluation
3. Results
3.1. Correlations between Canopy Parameters and Yield
3.2. Changes in the CVP at Different Yield Levels during the Whole Growth Period
3.3. Image Feature Parameters and CVP Correlation Analysis
3.4. CVP Prediction Model Based on the RF Model
4. Discussion
4.1. Advantages of the Use of Digital Imaging for Monitoring Rice Growth
4.2. Advantages of the Use of CVP Compared with the LAI and PH for Predicting Rice Yields
4.3. Relationships between Image Feature Parameters and the CVP
4.4. Advantages of the Modelling Methods
5. Conclusions
- (1)
- The CVP was positively correlated with yield, and the correlation of the CVP with yield was stronger than the correlations of the LAI and PH with yield. Hence, the CVP can be used as an important canopy structure parameter for predicting final yields better than LAI and PH during the rice growth period.
- (2)
- The GMR threshold segmentation method can be used to rapidly segment vegetation and non-vegetation pixels. The correlation between the CC and CVP was the greatest among all the image feature parameters, but when the CVP was large, the CC became saturated. Furthermore, the correlations between the VIs (except the NBI) and CVP before image segmentation were stronger than those after segmentation.
- (3)
- Considering the characteristics of the different types of rice varieties, in combination with the RF regression algorithm, the CVP can be estimated with a high degree of accuracy (R2 = 0.92).
Author Contributions
Funding
Conflicts of Interest
References
- Reynolds, M.; Foulkes, J.; Furbank, R.; Griffiths, S.; King, J.; Murchie, E.; Parry, M.; Slafer, G. Achieving yield gains in wheat. Plant Cell Environ. 2012, 35, 1799–1823. [Google Scholar] [CrossRef] [PubMed]
- Meacham, K.; Sirault, X.; Quick, W.P.; von Caemmerer, S.; Furbank, R. Diurnal solar energy conversion and photoprotection in rice canopies. Plant Physiol. 2017, 173, 495–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Rahman, T.; Song, C.; Su, B.Y.; Yang, F.; Yong, T.W.; Wu, Y.S.; Zhang, C.Y.; Yang, W.Y. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192–193, 140–148. [Google Scholar] [CrossRef]
- Perez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Kiniry, J.R.; Simpson, C.E.; Schubert, A.M.; Reed, J.D. Peanut leaf area index, light interception, radiation use efficiency, and harvest index at three sites in Texas. Field Crops Res. 2005, 91, 297–306. [Google Scholar] [CrossRef]
- Timlin, D.J.; Fleisher, D.H.; Kemanian, A.R.; Reddy, V.R. Plant density and leaf area index effects on the distribution of light transmittance to the soil surface in maize. Agron. J. 2014, 106, 1828. [Google Scholar] [CrossRef]
- Sorce, C.; Giovannelli, A.; Sebastiani, L.; Anfodillo, T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep. 2013, 32, 885–898. [Google Scholar] [CrossRef]
- Shen, G.J.; Zhan, W.; Chen, H.X.; Xing, Y.Z. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci. 2014, 215–216, 11–18. [Google Scholar] [CrossRef]
- Paton, G.; Boag, B. Digital camera based measurement of crop cover for wheat yield prediction. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Wan, L.; Li, Y.J.; Cen, H.Y.; Zhu, J.P.; Yin, W.X.; Wu, W.K.; Zhu, H.Y.; Sun, D.W.; Zhou, W.J.; He, Y. Combining UAV-Based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Andújar, D.; Fernández-Quintanilla, C.; Dorado, J. Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry. Sensors 2015, 15, 12999–13011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eitel, J.U.H.; Magney, T.S.; Vierling, L.A.; Greaves, H.E.; Zheng, G. An automated method to quantify crop height and calibrate satellite-derived biomass using hypertemporal lidar. Remote Sens. Environ. 2016, 187, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Adamsen, F.G.; Pinter, P.J.; Barnes, E.M.; Lamorte, R.L.; Wall, G.W.; Leavitt, S.W.; Kimball, B.A. Measuring wheat senescence with a digital camera. Crop Sci. 1999, 39, 719–724. [Google Scholar] [CrossRef]
- Rorie, R.L.; Purcell, L.C.; Mozaffari, M.; Karcher, D.E.; King, C.A.; Marsh, M.C.; Longer, D.E. Association of “Greenness” in corn with yield and leaf nitrogen concentration. Agron. J. 2011, 103, 529. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.J.; Lee, B.W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J. Agron. 2013, 48, 57–65. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, P.H.; Zhang, G.; Ran, J.; Shi, W.M.; Wang, D.J. A critical nitrogen dilution curve for japonica rice based on canopy images. Field Crops Res. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Di, L.P.; Zhang, L.P.; Deng, M.X.; Qin, Z.H.; Zhao, S.H.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Liang, L.; Qin, Z.H.; Zhao, S.H.; Di, L.P.; Zhang, C.; Deng, M.X.; Lin, H.; Zhang, L.P.; Wang, L.J.; Liu, Z.X. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int. J. Remote Sens. 2016, 37, 2923–2949. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Walker, C.N.; Angus, J.F. Estimating the nitrogen status of crops using a digital camera. Field Crops Res. 2010, 118, 221–227. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.J.; Zhang, G.; Wang, J. Estimating nitrogen status of rice using the image segmentation of g-r thresholding method. Field Crops Res. 2013, 149, 33–39. [Google Scholar] [CrossRef]
- Ahmad, I.S.; Reid, J.F. Evaluation of colour representations for maize images. J. Agric. Eng. Res. 1996, 63, 185–195. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Ariel Trupkin, S.; Karayekov, E.; Sabrina Buchovsky, A.; Rossi, C.; José Casal, J. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, M.M.; Wang, S.Q.; Wu, Y.D. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 152–159, (In Chinese with English abstract). [Google Scholar]
- Meng, X.T.; Bao, Y.L.; Liu, J.G.; Liu, H.J.; Zhang, X.L.; Zhang, Y.; Wang, P.; Tang, H.T.; Kong, F.C. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Andújar, D.; Ribeiro, A.; Fernández-Quintanilla, C.; Dorado, J. Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Comput. Electron. Agric. 2016, 122, 67–73. [Google Scholar] [CrossRef]
- Omasa, K.; Hosoi, F.; Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 2006, 58, 881–898. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Feng, H.; Yang, W.N.; Duan, L.F.; Chen, G.X.; Xiong, L.Z.; Liu, Q. High-Throughput volumetric reconstruction for 3D wheat plant architecture studies. J. Innov. Opt. Health Sci. 2016, 9, 1650037. [Google Scholar] [CrossRef]
- Yang, W.N.; Feng, H.; Zhang, X.H.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.Z.; Yan, J.B. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.L.; He, F.; Cui, K.H.; Buresh, R.J.; Xu, B.; Gong, W.H.; Peng, S.B. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res. 2008, 105, 70–80. [Google Scholar] [CrossRef]
- Zhao, D.D.; Shen, J.Y.; Lang, K.; Liu, Q.R.; Li, Q.Q. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain. Agric. Water Manag. 2013, 118, 87–92. [Google Scholar]
- Zhao, L.M.; Li, M.; Zheng, D.F.; Gu, C.M.; Na, Y.G.; Xie, B.S. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 159–169, (In Chinese with English abstract). [Google Scholar]
- Luxmoore, R.J.; Millington, R.J.; Marcellos, H. Soybean canopy structure and some radiant energy relations. Agron. J. 1971, 63, 111–114. [Google Scholar] [CrossRef]
- Li, Z.P.; Song, M.D.; Feng, H. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 195–202, (In Chinese with English abstract). [Google Scholar]
- Chen, C.; Wang, Y.; Yang, B.; Zhu, Z.K.; Cao, W.Y.; Luo, G.; Zhou, J.; Wang, X.J.; Yu, X.F.; Yuan, Q.M.; et al. Plant height affects nitrogen absorption and utilization in rice with similar genetic background. Sci. Agric. Sin. 2015, 48, 4450–4459, (In Chinese with English abstract). [Google Scholar]
- He, Y.; Deng, L.; Mao, Z.H.; Sun, J. Remote sensing estimation of canopy SPAD Value for maize based on digital camera. Sci. Agric. Sin. 2018, 51, 66–77, (In Chinese with English abstract). [Google Scholar]
- Rossini, M.; Meroni, M.; Migliavacca, M.; Manca, G.; Cogliati, S.; Busetto, L.; Picchi, V.; Cescatti, A.; Seufert, G.; Colombo, R. High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. Agric. For. Meteorol. 2010, 150, 1283–1296. [Google Scholar] [CrossRef]
- Duan, L.F.; Yang, W.N.; Huang, C.L.; Liu, Q. A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods. 2011, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Cheng, T.; Zhou, K.; Zheng, H.B.; Yao, X.; Tian, Y.C.; Zhu, Y.; Cao, W.X. WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J. Photogramm. Remote Sens. 2017, 129, 103–117. [Google Scholar] [CrossRef]
Experiment | Site | Types | Varieties | Rice Variety Characteristics | Nitrogen Rates (kg/ha) |
---|---|---|---|---|---|
Exp. 1 | Fangzheng | A | Suijing18 (SJ18) Longyang16 (LY16) | Early-maturing and high-yield | 0 (N0), 79.1 (N1), 90.5 (N2), 102.3 (N3), 115.0 (N4) |
B | Late-maturing and high-quality | ||||
Exp. 2 | Wuchang | A | Songjing6 (SJ6) Wuyoudao4 (WYD4) | Early-maturing and high-yield | |
B | Late-maturing and high-quality |
Index | Formula | Reference |
---|---|---|
Colour intensity index (INT) | (R + G + B)/3 | [25] |
Normalized blueness intensity (NBI) | B/(R + G + B) | [26] |
Normalized greenness intensity (NGI) | G/(R + G + B) | [26] |
Normalized redness intensity (NRI) | R/(R + G + B) | [26] |
Green-red ratio index (GRRI) | G/R | [27] |
Green-blue ratio index (GBRI) | G/B | [28] |
Normalized green-red difference index (NGRDI) | (G − R)/(G + R) | [29] |
Normalized green-blue difference index (NGBDI) | (G − B)/(G + B) | [30] |
Excess green index (EXG) | 2G − R − B | [31] |
Visible band difference vegetation index (VDVI) | (2G − R − B)/(2G + R + B) | [32] |
Period | Canopy Parameters | A (n = 30) | B (n = 30) |
---|---|---|---|
Heading stage | LAIHS | 0.58 ** | 0.75 ** |
PHHS | 0.52 ** | 0.81 ** | |
CVPHS | 0.59 ** | 0.82 ** | |
Whole growth period | LAIavg | 0.72 ** | 0.73 ** |
PHavg | 0.54 ** | 0.79 ** | |
CVPavg | 0.72 ** | 0.81 ** |
Rice Varieties | N0 | N1 | N2 | N3 | N4 | |
---|---|---|---|---|---|---|
A | SJ18 | Low yield | Middle yield | High yield | High yield | High yield |
SJ6 | Low yield | High yield | Middle yield | Middle yield | High yield | |
B | LY16 | Low yield | High yield | High yield | Middle yield | High yield |
WYD4 | Low yield | Middle yield | Middle yield | High yield | High yield |
CC | INT | NBI | NGI | NRI | GRRI | GBRI | NGRDI | NGBDI | EXG | VDVI | |
---|---|---|---|---|---|---|---|---|---|---|---|
Before segmentation | −0.59 ** | 0.19 ** | 0.61 ** | −0.65 ** | 0.65 ** | 0.28 ** | 0.70 ** | 0.25 ** | 0.50 ** | 0.61 ** | |
After segmentation | 0.83 ** | −0.54 ** | 0.26 ** | 0.22 ** | −0.50 ** | 0.39 ** | −0.05 | 0.46 ** | −0.07 | −0.02 | 0.22 ** |
Type | Varieties | Equation | R2 |
---|---|---|---|
A | SJ18 | y = 0.2064e3.6204x | 0.78 |
SJ6 | y = 0.1759e3.7112x | 0.77 | |
B | LY16 | y = 0.2158e3.8165x | 0.86 |
WYD4 | y = 0.1653e3.8709x | 0.85 |
Modelling Method | Modelling Set | Validation Set | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
GPM | 0.89 | 0.49 | 0.81 | 0.66 |
LPM | 0.92 | 0.42 | 0.92 | 0.44 |
Canopy Parameters | A Varieties | B Varieties |
---|---|---|
Predicted CVPavg | 0.60 ** | 0.80 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Ustin, S.L.; Zhang, Z.; Liu, H.; Zhang, X.; Meng, X.; Cui, Y.; Guan, H. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography. Sensors 2020, 20, 4011. https://doi.org/10.3390/s20144011
Yu Z, Ustin SL, Zhang Z, Liu H, Zhang X, Meng X, Cui Y, Guan H. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography. Sensors. 2020; 20(14):4011. https://doi.org/10.3390/s20144011
Chicago/Turabian StyleYu, Ziyang, Susan L. Ustin, Zhongchen Zhang, Huanjun Liu, Xinle Zhang, Xiangtian Meng, Yang Cui, and Haixiang Guan. 2020. "Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography" Sensors 20, no. 14: 4011. https://doi.org/10.3390/s20144011
APA StyleYu, Z., Ustin, S. L., Zhang, Z., Liu, H., Zhang, X., Meng, X., Cui, Y., & Guan, H. (2020). Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography. Sensors, 20(14), 4011. https://doi.org/10.3390/s20144011