Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Working Electrodes Preparation
2.2. Samples
2.3. Voltammetric Characterization and Tests
2.4. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Content: TPC Index and FC Index
3.2. Electrochemical Characterization of the Carbon Composite Electrodes Towards Catechol
3.3. Discrimination Capability of Grape Extracts with An Array of EM-Carbon Electrodes
3.4. E-Tongue: Discrimination Capability and Regression Models to Correlate with Chemical Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montealegre, R.R.; Peces, R.R.; Vozmediano, J.C.; Gascueña, J.M.; Romero, E.G. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Moncalvo, A.; Marinoni, L.; Dordoni, R.; Garrido, G.D.; Lavelli, V.; Spigno, G. Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Addit. Contam. Part A 2016, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Cheng, V.J.; Zhang, H.; Mros, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Bekhit, A.A.; McConnell, M. Effect of extraction system and grape variety on anti-influenza compounds from wine production residue. Food Control. 2019, 99, 180–189. [Google Scholar] [CrossRef]
- Ky, I.; Teissedre, P.-L. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef] [PubMed]
- Haas, I.C.D.S.; Toaldo, I.M.; Burin, V.M.; Bordignon-Luiz, M.T. Extraction optimization for polyphenolic profiling and bioactive enrichment of extractives of non-pomace residue from grape processing. Ind. Crop. Prod. 2018, 112, 593–601. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in Grape Seeds—Biochemistry and Functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.; Young, J.C.; Bryan, M.; Wu, Y. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J. Food Agric. Environ. 2003, 1, 42–47. [Google Scholar]
- Di Lecce, G.; Arranz, S.; Jáuregui, O.; Tresserra-Rimbau, A.; Rada, P.Q.; Lamuela-Raventós, R.M. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J.M.; Heredia, F.J.; Byrne, H.J. Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 2017, 167, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Méndez, M.L.; De Saja, J.A.; González-Antón, R.; García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martín-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef] [PubMed]
- Newair, E.F.; Kilmartin, P.A.; Garcia, F. Square wave voltammetric analysis of polyphenol content and antioxidant capacity of red wines using glassy carbon and disposable carbon nanotubes modified screen-printed electrodes. Eur. Food Res. Technol. 2018, 244, 1225–1237. [Google Scholar] [CrossRef]
- Beitollahi, H.; Nekooei, S. Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 2015, 28, 645–653. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Daneshi, M.; Nami-Ana, F.; Behbahani, M.; Bagheri, A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J. Hazard. Mater. 2016, 318, 117–124. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef]
- Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq. 2016, 213, 312–316. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal. Chim. Acta 2013, 765, 54–62. [Google Scholar] [CrossRef]
- García-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Blanco, Y.; Fernandez-Escudero, J.; Barajas-Tola, E.; Rodríguez-Pérez, M.A.; Martín-Pedrosa, F.; Rodriguez-Mendez, M.L. Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles. Front. Chem. 2018, 6, 131. [Google Scholar] [CrossRef] [PubMed]
- Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 2008, 53, 5848–5866. [Google Scholar] [CrossRef]
- Reis, R.M.; Valim, R.B.; Rocha, R.S.; Lima, A.S.; Castro, P.S.; Bertotti, M.; Lanza, M.R. The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim. Acta 2014, 139, 1–6. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.; Gay, M.; De Saja, J.A. New insights into sensors based on radical bisphthalocyanines. J. Porphyr. Phthalocyanines 2009, 13, 1159–1167. [Google Scholar] [CrossRef]
- Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosens. Bioelectron. 2012, 35, 193–199. [Google Scholar] [CrossRef]
- Wang, Y.; Hasebe, Y. Tyrosinase-modified carbon felt-based flow-biosensors: The role of ultra-sonication in shortening the enzyme immobilization time and improving the sensitivity for p-chlorophenol. J. Environ. Sci. 2011, 23, 1038–1043. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, F.; Hasebe, Y.; Jia, H.; Zhang, Z. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018, 122, 174–182. [Google Scholar] [CrossRef]
- Redin, G.G.I.; Silva, T.; Vicentini, F.C.; Fatibello-Filho, O. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film. Enzym. Microb. Technol. 2018, 116, 41–47. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic Tongues–A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Śliwińska-Bartel, M.; Wiśniewska, P.; Dymerski, T.; Namiesnik, J.; Wardencki, W. Food Analysis Using Artificial Senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Cetó, X.; Apetrei, C.; Del Valle, M.; Rodriguez-Mendez, M.; Cetó, X. Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochim. Acta 2014, 120, 180–186. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Capdevilla, F.; Vila-Planas, J.; Domingo, C.; Büttgenbach, S.; Llobera, A.; Puig-Pujol, A.; Jimenez-Jorquera, C. Hybrid Electronic Tongues Applied to the Quality Control of Wines. J. Sens. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; de Saja, J.A.; Rodriguez-Mendez, M.L. Analysis of Musts and Wines with a bio-electronic tongue based on Tyrosinase and Glucose oxidase. Food Chem. 2019, 289, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT 2020, 118, 108785. [Google Scholar] [CrossRef]
- Kirsanov, D.; Mednova, O.; Vietoris, V.; Kilmartin, P.A.; Legin, A. Towards reliable estimation of an “electronic tongue” predictive ability from PLS regression models in wine analysis. Talanta 2012, 90, 109–116. [Google Scholar] [CrossRef]
- García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martin-Pedrosa, F.; Del Valle, I.; De Saja, J.A.; Rodriguez-Mendez, M. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts. Sensors 2015, 15, 29233–29249. [Google Scholar] [CrossRef]
- Leardi, R.; González, A.L. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemom. Intell. Lab. Syst. 1998, 41, 195–207. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Eberle, W.; Chu, C.-Y. Genetic algorithms in feature and instance selection. Knowl.-Based Syst. 2013, 39, 240–247. [Google Scholar] [CrossRef]
- Linaje, M.; Quintanilla, M.C.; Gonzalez, A.; Del Valle, J.L.; Alcaide, G.; Rodriguez-Mendez, M. Improvement of the synthesis of lutetium bisphthalocyanine using the Taguchi method. Analyst 2000, 125, 341–346. [Google Scholar] [CrossRef]
- Compendium of International Methods of Analysis of Wines and Musts. Available online: http://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 20 July 2020).
- Resnikoff, H.L.; Wells, R.O. Wavelet Data Compression. In Wavelet Analysis; Springer: New York, NY, USA, 1998; ISBN 978-1-4612-6830-7. [Google Scholar]
- Arora1, P.; Ansari, S.H.; Nazish, I. Bio-Functional Aspects of Grape Seeds-A Review. Int. J. Phytomed. 2010, 2, 177–185. [Google Scholar]
- Jackson, R.S. Chemical Constituents of Grapes and Wine. Wine Sci. 2000, 232–280. [Google Scholar]
- Revilla, E.; Escalona, J.M.; Alonso, E.; Kovac, V. The phenolic com- position of table grapes. In Food Flavors: Generation, Analysis and Process Influence; Charalambous, G., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1995; pp. 132–141. [Google Scholar]
- Pekić, B.; Kovač, V.; Alonso, E.; Revilla, E. Study of the extraction of proanthocyanidins from grape seeds Food Chem. Food Chem. 1998, 61, 201–206. [Google Scholar] [CrossRef]
- Fuleki, T.; Ricardo da Silva, J.M. Catechin and procyanidin composition of seeds from grape cultivars grown in Ontario. J. Agric. Food Chem. 1997, 45, 1156–1160. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Togores, J. Tratadode Enología; Mundi-Prensa Libros: Madrid, Spain, 2010; pp. 168–197. [Google Scholar]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A.; Glories, Y.; Maujean, A.; Branco, J.M. Handbook of Enology, the Microbiology of Wine and Vinifications; John and Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 1432–1485. [Google Scholar]
- Petrucci, R.; Astolfi, P.; Greci, L.; Firuzi, O.; Saso, L.; Marrosu, G. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium. Electrochim. Acta 2007, 52, 2461–2470. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. The use of cycle voltammetry for wine analysis: Determination of polyphenols and free sulfur dioxide. Anal. Chim. Acta 2010, 668, 155–165. [Google Scholar] [CrossRef]
- Martín, M.G.; De Saja, J.A.; Muñoz, R.; Rodriguez-Mendez, M. Multisensor system based on bisphthalocyanine nanowires for the detection of antioxidants. Electrochim. Acta 2012, 68, 88–94. [Google Scholar] [CrossRef]
- García-Hernández, C.; García-Cabezón, C.; Martin-Pedrosa, F.; De Saja, J.A.; Rodriguez-Mendez, M.L. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors. Beilstein J. Nanotechnol. 2016, 7, 1948–1959. [Google Scholar] [CrossRef]
- Sharpe, E.; Bradley, R.; Frasco, T.; Jayathilaka, D.; Marsh, A.; Andreescu, S. Metal oxide based multisensory array and portable database for field analysis of antioxidants. Sens. Actuators B Chem. 2014, 193, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Medina-Plaza, C.; De Saja, J.A.; Rodriguez-Mendez, M.L. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens. Bioeletr. 2014, 57, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Martens, H. Reliable and relevant modelling of real world data: A personal account of the development of PLS Regression. Chemom. Intell. Lab. Syst. 2001, 58, 85–95. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R. Introduction to the PLS Package. Available online: https://cran.r-project.org/web/packages/pls/vignettes/pls-manual.pdf (accessed on 20 May 2020).
Sample | Extractions | TPC Index | FC Index |
---|---|---|---|
GRAPE SKIN | Cabernet (C) | 12.2 | 11.8 |
Garnacha (G) | 8.5 | 7.98 | |
Juan García (J) | 15.1 | 10.2 | |
Mencia Regadio (MR) | 16.7 | 15.5 | |
Mencia Secano (MS) | 14.0 | 12.8 | |
Prieto Picudo (P) | 21.1 | 16.3 | |
Rufete (R) | 5.5 | 6.8 | |
Tempranillo (T) | 12.1 | 12.3 | |
GRAPE SEED | Cabernet (C) | 63.8 | 57.6 |
Garnacha (G) | 53.5 | 47.7 | |
Juan García (J) | 78.6 | 46.6 | |
Mencia Regadio (MR) | 70.7 | 50.1 | |
Mencia Secano (MS) | 70.6 | 41.0 | |
Prieto Picudo (P) | 152.4 | 73.2 | |
Rufete (R) | 62.1 | 50.6 | |
Tempranillo (T) | 40.3 | 32.3 |
Sample | Parameter | R2c (a) | RMSEC (b) | R2V (c) | RMSEV (d) | LV (e) |
---|---|---|---|---|---|---|
Skin extract | FC index | 0.999 | 0.292 | 0.999 | 0.413 | 5 |
Seed extract | FC index | 0.998 | 2.09 | 0.996 | 3.11 | 5 |
Skin extract | TPC index | 0.998 | 0.532 | 0.996 | 0.798 | 4 |
Seed extract | TPC index | 0.999 | 2.58 | 0.997 | 4.15 | 7 |
Sample | Parameter | R2c (a) | RMSEC (b) | R2V (c) | RMSEV (d) | LV (e) |
---|---|---|---|---|---|---|
Skin extract | FC index | 0.998 | 0.475 | 0.994 | 0.868 | 4 |
Seed extract | FC index | 0.998 | 2.06 | 0.992 | 4.67 | 6 |
Skin extract | TPC index | 0.998 | 0.496 | 0.993 | 1.1 | 4 |
Seed extract | TPC index | 0.998 | 3.55 | 0.994 | 6.25 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Cabezon, C.; Gobbi Teixeira, G.; Dias, L.G.; Salvo-Comino, C.; García-Hernandez, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors 2020, 20, 4176. https://doi.org/10.3390/s20154176
Garcia-Cabezon C, Gobbi Teixeira G, Dias LG, Salvo-Comino C, García-Hernandez C, Rodriguez-Mendez ML, Martin-Pedrosa F. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors. 2020; 20(15):4176. https://doi.org/10.3390/s20154176
Chicago/Turabian StyleGarcia-Cabezon, Cristina, Guilherme Gobbi Teixeira, Luís Guimaraes Dias, Coral Salvo-Comino, Celia García-Hernandez, Maria Luz Rodriguez-Mendez, and Fernando Martin-Pedrosa. 2020. "Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue" Sensors 20, no. 15: 4176. https://doi.org/10.3390/s20154176
APA StyleGarcia-Cabezon, C., Gobbi Teixeira, G., Dias, L. G., Salvo-Comino, C., García-Hernandez, C., Rodriguez-Mendez, M. L., & Martin-Pedrosa, F. (2020). Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors, 20(15), 4176. https://doi.org/10.3390/s20154176