Understanding Sensor Cities: Insights from Technology Giant Company Driven Smart Urbanism Practices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- ▪
- Waste management, capable of providing real-time type and quantity of waste via cloud solutions, to optimize time and resources [10,134]. With the development of new technology devices, electronic waste (e-waste) represents an environmental and health challenge due to its difficult disposal and potential impacts on the environment.
- ▪
- Energy efficiency, which refers to all technologies able to reduce energy consumption. For example, street lighting networks equipped with sensors and public and private buildings equipped with real-time consumption monitoring systems represent the forward-looking urban infrastructures needed to manage urban activities efficiently [12,13,135].
- ▪
- Renewable energy sources, such as solar, wind, thermal and biogas, which represent a sustainable and efficient alternative to fossil fuels, capable of guaranteeing a stabilization of energy prices and a sustainable source of energy supply for urban processes (e.g., public transport, heating of public and private buildings) [14,15].
- ▪
- Water management, which includes solutions capable of providing real-time data on the consumption and quality of water distribution system, fundamental for the sustainability and efficiency of the urban system [16].
- ▪
- Material flows, those underline the exchange and transformation of resources (e.g., raw materials, by-products, waste) between various interested actors [23].
- ▪
- Biodiversity conservation, which includes revitalization actions for abandoned urban and industrial areas and the safeguarding of green and urban spaces [24].
- ▪
- Land use optimization, as support for urban agriculture and infrastructure [27].
- ▪
- Air and noise pollution prevention, to reduce pollutant emissions through ICTs, sensors, and real-time monitoring stations, capable of providing high-definition videos and images to check environmental quality [30].
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location | High-Tech Company Partner | Sensor City Project | Focus | Source | |
---|---|---|---|---|---|
City | Nation | ||||
Toronto | Canada | Sidewalk Labs | Building, energy, waste, environment, water | [182] | |
Hamburg Port | Germany | Cisco | smartROAD | Building, energy, water, mobility | [183] |
Gelsenkirchen | Germany | Huawei | Gelsenkirchen: A Small, Smart City with Big Plans | Mobility, environment, energy | [184] |
Adelaide | Australia | Cisco | Lighthouse City | Mobility, environment | [185] |
Kansas City | U.S.A. | Cisco | Smart+Connected Communities | Mobility, water, energy | [186] |
Singapore | Singapore | Smarter Digital City 3.0 | Mobility, living, people, finance, retail | [187] | |
Friedrichshafen | Germany | Deutsche Telekom | T-City Friedrichshafen | Energy, mobility, healthcare, building | [188] |
Charlotte | U.S.A. | Microsoft | Charlotte sustainability city | Energy, mobility, education, safety | [189] |
Dublin | Ireland | IBM | SMART Dublin | Mobility, environment, building, water, energy | [190,191] |
Aspern Seestadt | Austria | Siemens | Aspern Smart City Research | Building, energy, environment, water | [192] |
Stockholm Port | Sweden | Ericsson | Stockholm Royal Seaport’s Smart Energy City project | Water, environment, energy | [193] |
Dallas | U.S.A. | Ericsson | Factory of the Future | Mobility | [194] |
Espoo | Finland | Nokia | Luxturrim5G Project | Environment, mobility, safety, energy | [195] |
Hangzhou | China | Alibaba | City Brain | Mobility, water, environment, healthcare | [144] |
Maharashtra | India | Oracle | Centre of Excellence | Mobility, water, education | [196] |
Bari Matera | Italy | TIM | Bari Matera 5G | Tourism, culture, mobility, safety, environment, healthcare, agriculture | [197] |
Saemangeum | South Korea | Samsung | Green Energy Industrial Complex | Energy, education, agriculture, tourism, environment | [198] |
Shenzhen | China | Tencent | Tencent Campus | Energy, environment, mobility, education | [199] |
Guiyang | China | Alibaba, Tencent, Apple | Guiyang Sunac City | Environment, mobility, recreation | [200] |
Valencia | Spain | Telefonica | Valencia Smart City Platform | Mobility, waste, environment, energy | [201] |
References
- Yigitcanlar, T. Australian local governments’ practice and prospects with online planning. URISA J. 2006, 18, 7–17. [Google Scholar]
- Arbolino, R.; De Simone, L.; Carlucci, F.; Yigitcanlar, T.; Ioppolo, G. Towards a sustainable industrial ecology: Implementation of a novel approach in the performance evaluation of Italian regions. J. Clean. Prod. 2018, 178, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Ioppolo, G. How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. J. Clean. Prod. 2018, 201, 556–569. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, F.; Hsieh, H. U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; Association for Computing Machinery: New York, NY, USA, 2013. [Google Scholar]
- Bettencourt, L. The Uses of Big Data in Cities. Big Data 2014, 2, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Huang, S.-L.; Hsu, W.-L. Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landsc. Urban Plan. 2013, 63, 61–74. [Google Scholar] [CrossRef]
- Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R. An environmentally sustainable decision model for urban solid waste management. Waste Manag. 2004, 24, 277–295. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. The zero-waste index: A performance measurement tool for waste management systems in a ‘zero waste city’. J. Clean. Prod. 2013, 50, 123–132. [Google Scholar] [CrossRef]
- Aazam, M.; St-Hilaire, M.; Lung, C.-H.; Lambadaris, I. Cloud-Based Smart Waste Management for Smart Cities. In Proceedings of the IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, Toronto, ON, Canada, 23–25 October 2016; pp. 188–193. [Google Scholar]
- Glazebrook, G.; Newman, P. The city of the future. Urban Plan. 2018, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Chui, K.; Lytras, M.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Ghiani, E.; Serpi, A.; Pilloni, V.; Sias, G.; Simone, M.; Marcialis, G.; Armano, G.; Pegoraro, P.A. A Multidisciplinary Approach for the development of Smart Distribution Networks. Energies 2018, 11, 2530. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Mathiesen, B.; Connolly, D.; Østergaard, P. Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions. Chem. Eng. Trans. 2014, 39, 1–6. [Google Scholar]
- Strielkowski, W.; Streimikiene, D.; Fomina, A.; Semenova, E. Internet of Energy (IoE) and High-Renewables Electricity System Market Design. Energies 2019, 12, 4790. [Google Scholar] [CrossRef] [Green Version]
- Gourbesville, P.; Ler, L. Framework Implementation for Smart Water Management. EPIC Ser. Eng. 2018, 3, 1139–1146. [Google Scholar]
- Nitschke, U.; Ouan, N.; Peters, G. Megacities—A challenge for (German) Development Cooperation. ASIEN 2007, 103, 79–87. [Google Scholar]
- Lin, J. Urbanization and Inequality in China’s Megacities: A perspective from Chinese Industrial Workers. In Dialogues of Sustainable Urbanisation: Social Science Research and Transitions to Urban Contexts; Condie, J., Cooper, A.M., Eds.; University of Western Sydney: Penrith, Australia, 2015; pp. 164–168. [Google Scholar]
- Jowell, A.; Zhou, B.; Barry, M. The impact of megacities on health: Preparing for a resilient future. Lancet Planet. Health 2017, 1, e176–e178. [Google Scholar] [CrossRef]
- Macke, J.; Sarate, J.; De Atayde Moschen, S. Smart Sustainable Cities Evaluation and Sense of Community. J. Clean. Prod. 2019, 239, 118103. [Google Scholar] [CrossRef]
- Muzammal, M.; Talat, R.; Sodhro, A.H.; Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf. Fusion 2020, 53, 155–164. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Sangaiah, A.K.; Sodhro, G.H.; Lohano, S.; Pirbhulal, S. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications. Sensors 2018, 18, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Morimoto, Y. Biodiversity and ecosystem services in urban areas for smart adaptation to climate change: “Do you Kyoto”? Landsc. Ecol. Eng. 2010, 7, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Arndt, W.-H.; Schäfer, T.; Emberger, G.; Tomaschek, J.; Lah, O. Transport in Megacities—Development of Sustainable Transportation Systems. In Proceedings of the 13th World Conference on Transport Research (WCTR), Rio de Janeiro, Brazil, 15–18 July 2013. [Google Scholar]
- Sadiku, M.; Shadare, A.; Musa, S. Smart Transportation: A Primer. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2017, 7, 6–7. [Google Scholar] [CrossRef]
- Kim, G.; Miller, P.A.; Nowak, D.J. Urban vacant land typology: A tool for managing urban vacant land. Sustain. Cities Soc. 2018, 36, 144–156. [Google Scholar] [CrossRef]
- Kamal-Chaoui, L. The Implementation of the Korean Green Growth Strategy in Urban Areas. In OECD Regional Development Working Papers 2011/02; OECD Publishing: Paris, France, 2011. [Google Scholar]
- OECD. Compact City Policies: Korea Towards Sustainable and Inclusive Growth. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Peng, H.; Bohong, Z.; Qinpei, K. Smart City Environmental Pollution Prevention and Control Design based on Internet of Things. IOP Conference Series. Earth Environ. Sci. 2017, 94, 012174. [Google Scholar]
- Thomson, G.; Newman, P. Urban fabrics and urban metabolism—From sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- Kumar, V.T.M.; Dahiya, B. Smart Economy in Smart Cities. In Smart Economy in Smart Cities, 1st ed.; Springer Singapore: Singapore, 2017; Chapter 1. [Google Scholar]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 2, 274–279. [Google Scholar] [CrossRef]
- Bibri, S.E. A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustain. Cities Soc. 2018, 38, 758–794. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart Eco-City Strategies and Solutions for Sustainability: The Cases of Royal Seaport, Stockholm, and Western Harbor, Malmö, Sweden. Urban Sci. 2020, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Young, G.W.; Kitchin, R.; Naji, J. Building City Dashboards for Different Types of Users. J. Urban Technol. 2020, 1–21. [Google Scholar] [CrossRef]
- Batty, M. Smart Cities, Big Data. Environ. Plan. B Plan. Des. 2012, 39, 191–193. [Google Scholar] [CrossRef] [Green Version]
- Postránecký, M.; Svítek, M. Smart City Near to 4.0—An Adoption of Industry 4.0 Conceptual Model; Smart City Symposium Prague (SCSP): Prague, Czech Republic, 2017; pp. 1–5. [Google Scholar]
- Wirtz, B.W.; Weyerer, J.C.; Schichtel, F.T. An integrative public IoT framework for smart government. Gov. Inf. Q. 2018, 36, 333–345. [Google Scholar] [CrossRef]
- Arkian, H.; Diyanat, A.; Pourkhalili, A. MIST: Fog-based Data Analytics Scheme with Cost-Efficient Resource Provisioning for IoT Crowdsensing Applications. J. Netw. Comput. Appl. 2017, 82, 152–165. [Google Scholar] [CrossRef]
- Goncalves, R.J.; Sgurev, V.; Jotsov, V.; Kacprzyk, J. Intelligent Systems: Theory, Research and Innovation in Applications; Springer International Publishing: New York, NY, USA, 2020; p. 864. [Google Scholar]
- Tekouabou, S.C.K.; Alaoui, E.A.A.; Cherif, W.; Silkan, H. Improving parking availability prediction in smart cities with IoT and ensemble-based model. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z. Some practical constraints and solutions for optical camera communication. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and its Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC’12), Helsinki, Finland, 17 August 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 13–16. [Google Scholar]
- Uhlemann, T.H.-J.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber-Physical production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Rathore, M.M.U.; Paul, A.; Hong, W.H. Exploiting IoT and Big Data Analytics: Defining Smart Digital City using Real-Time Urban Data. Sustain. Cities Soc. 2017, 40, 600–610. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Hashem, I.A.T.; Chang, V.; Anuar, N.B. The Role of Big Data in Smart City. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Bibri, S.E. Big Data Science and Analytics for Smart Sustainable Urbanism. In Unprecedented Paradigmatic Shifts and Practical Advancements; Springer: Berlin, Germany, 2019. [Google Scholar]
- Kramers, A.; Höjer, M.; Lovehagen, N.; Wangel, J. Smart sustainable cities—Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 2014, 56, 52–62. [Google Scholar] [CrossRef]
- Palvia, P.; Baqir, N.; Nemati, H. ICT for socio-economic development: A citizens’ perspective. Inf. Manag. 2017, 55, 160–176. [Google Scholar] [CrossRef]
- Baucas, M.J.; Spachos, P. Using cloud and fog computing for large scale IoT-based urban sound classification. Simul. Model. Pract. Theory 2020, 101, 102013. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, K. Internet of Things, Big Data, Industry 4.0—Innovative Solutions in Logistics and Supply Chains Management. Procedia Eng. 2017, 182, 763–769. [Google Scholar] [CrossRef]
- Daissaoui, A.; Boulmakoul, A.; Karim, L.; Lbath, A. IoT and Big Data Analytics for Smart Buildings: A Survey. Procedia Comput. Sci. 2020, 170, 161–168. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L. Cognition in UAV-aided 5G and beyond communications: A survey. IEEE Trans. Cogn. Commun. Netw. 2020. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building “Artificially Intelligent Cities” Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors 2020, 20, 2988. [Google Scholar] [CrossRef] [PubMed]
- Faisal, A.; Yigitcanlar, T.; Kamruzzaman, M.; Paz, A. Mapping two decades of autonomous vehicle research: A systematic scientometric analysis. J. Urban Technol. 2020, in press. [Google Scholar] [CrossRef]
- Eicker, U.; Weiler, V.; Schumacher, J.; Braun, R. On the design of an urban data and modelling platform and its application to urban district analyses. Energy Build. 2020, 217, 109954. [Google Scholar] [CrossRef]
- Caprotti, F.; Liu, D. Emerging platform urbanism in China: Reconfigurations of data, citizenship and materialities. Technol. Forecast. Soc. Chang. 2020, 151. [Google Scholar] [CrossRef]
- Bissell, D. Affective platform urbanism: Changing habits of digital on-demand consumption. Geoforum 2020. [Google Scholar] [CrossRef]
- Young, G.W.; Kitchin, R. Creating design guidelines for building city dashboards from a user’s perspectives. Int. J. Hum. Comput. Stud. 2020, 140, 102429. [Google Scholar] [CrossRef]
- Batty, M. A perspective on city dashboards. Reg. Stud. Reg. Sci. 2015, 2, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Young, G.W.; Naji, J.; Charlton, M.; Brunsdon, C.; Kitchin, R. Future cities and multimodalities: How multimodal technologies can improve smart-citizen engagement with city dashboards. In Proceedings of the Institute of Sustainable Urbanism Talks #05: Future Cities, Braunschweig, Germany, 14 November 2017. [Google Scholar]
- International Data Corporation (IDC). Worldwide Smart Cities Spending Guide; International Data Corporation: Framingham, MA, USA, 2020. [Google Scholar]
- Lane, N.D.; Eisenman, S.B.; Musolesi, M.; Miluzzo, E.; Campbell, A.T. Urban sensing: Opportunistic or participatory? In Proceedings of the 9th Workshop on Mobile Computing Systems and Applications, Napa Valley, CA, USA, 25–26 February 2008; HotMobile: Hevel Modi'in Regional Council, Israel, 2008; pp. 11–16. [Google Scholar]
- Perng, S.Y.; Kitchin, R.; Donncha, D.M. Hackathons, entrepreneurial life and the making of smart cities. Geoforum 2018, 97, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Determining disaster severity through social media analysis: Testing the methodology with South East Queensland Flood Tweets. Int. J. Disaster Risk Reduct. 2020, 42, 101360. [Google Scholar] [CrossRef]
- Piro, G.; Cianci, I.; Grieco, L.A.; Boggia, G.; Camarda, P. Information centric services in Smart Cities. J. Syst. Softw. 2013, 88, 169–188. [Google Scholar] [CrossRef]
- Sharifi, A. A typology of smart city assessment tools and indicator sets. Sustain. Cities Soc. 2020, 53, 101936. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; UN General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Gabrys, J. Programming Environments: Environmentality and Citizen Sensing in the Smart City. Environ. Plan. D Soc. Space 2014, 32, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Marsal-Llacuna, L.; Segal, M.E. The Intelligenter method (I) for making “smarter” city projects and plans. Cities 2016, 55, 127–138. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Sustainable Urban and Regional Infrastructure Development: Technologies, Applications and Management; IGI Global: Hersey, PA, USA, 2010. [Google Scholar]
- International Institute for Management Development (IMD). IMD Smart City Index 2019; World Competitiveness Center: Lausanne, Switzerland, 2019. [Google Scholar]
- Hilty, L.M.; Aebischer, B.; Rizzoli, A.E. Modeling and evaluating the sustainability of smart solutions. Environ. Model. Softw. 2014, 56, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.; Gunasekaran, A.; Gawankar, S. Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process. Saf. Environ. Prot. 2018, 117, 408–425. [Google Scholar] [CrossRef]
- Ishida, T.; Isbister, K. Digital Cities—Technologies, Experiences, and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2000; p. 1765. [Google Scholar]
- Stollmann, J. Digital Cities. In The Wiley Blackwell Encyclopedia of Urban and Regional Studies; Wiley Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar]
- Colding, J.; Colding, M.; Barthel, S. Applying seven resilience principles on the Vision of the Digital City. Cities 2020, 103. [Google Scholar] [CrossRef]
- Talari, S.; Shafie-khah, M.; Siano, P.; Loia, V.; Tommasetti, A.; Catalao, J.P.S. A Review of Smart Cities Based on the Internet of Things Concept. Energies 2017, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; Kamruzzaman, M.D.; Buys, L.; Ioppolo, G.; Marques, J.; Da Costa, M.E.; Yun, J.J. Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities 2018, 81, 145–160. [Google Scholar] [CrossRef]
- Saborido, R.; Alba, E. Software systems from smart city vendors. Cities 2020, 101, 102690. [Google Scholar] [CrossRef]
- Lee, S.H.; Yigitcanlar, T.; Han, J.H.; Leem, Y.T. Ubiquitous urban infrastructure: Infrastructure planning and development in Korea. Innovation 2018, 10, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H. Ubiquitous city: Urban technologies, urban infrastructure and urban informatics. J. Inf. Sci. 2009, 35, 515–526. [Google Scholar] [CrossRef]
- Wang, J.; Hui, L.C.K.; Yiu, S.M.; Wang, E.K.; Fang, J. A survey on cyber-attacks against nonlinear state estimation in power systems of ubiquitous cities. Pervasive Mob. Comput. 2017, 39, 52–64. [Google Scholar] [CrossRef]
- Pancholi, S.; Yigitcanlar, T.; Guaralda, M. Public space design of knowledge and innovation spaces: Learnings from Kelvin Grove Urban Village, Brisbane. J. Open Innov. Technol. Mark. Complex. 2015, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ruiz, V.R.; Alfaro-Navarro, J.L.; Nevado-Pena, D. Knowledge-city index construction: An intellectual capital perspective. Expert Syst. Appl. 2014, 41, 5560–5572. [Google Scholar] [CrossRef]
- Penco, L.; Ivaldi, E.; Bruzzi, C.; Musso, E. Knowledge-based urban environments and entrepreneurship: Inside EU cities. Cities 2020, 96, 102443. [Google Scholar] [CrossRef]
- Komninos, N. Intelligent cities: Towards interactive and global innovation environments. Int. J. Innov. Reg. Dev. 2009, 1, 337–355. [Google Scholar] [CrossRef]
- Liugailaitė-Radzvickienė, L.; Jucevicius, R. Going to be an Intelligent City. Procedia Soc. Behav. Sci. 2014, 156, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Willis, K.S.; Aurigi, A. Digital and Smart Cities; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Landry, C. The Creative City—A Toolkit for Urban Innovators; Earthscan: Sterling, VA, USA, 2008. [Google Scholar]
- Baum, S.; O’Connor, K.; Yigitcanlar, T. The implications of creative industries for regional outcomes. Int. J. Foresight Innov. Policy 2009, 5, 44–64. [Google Scholar] [CrossRef]
- Li, X.; Fong, P.S.W.; Dai, S.; Li, Y. Towards sustainable smart cities: An empirical comparative assessment and development pattern optimization in China. J. Clean. Prod. 2019, 215, 730–743. [Google Scholar] [CrossRef]
- Sodiq, A.; Baloch, A.A.B.; Khan, S.A.; Sezer, N.; Mahmoud, S.; Jama, M.; Abdelaal, A. Towards Modern Sustainable Cities: Review of Sustainability principles and Trends. J. Clean. Prod. 2019, 227, 972–1001. [Google Scholar] [CrossRef]
- Mainka, A.; Khveshchanka, S.; Stock, W.G. Dimensions of Informational City Research. In Conference: Digital Cities 7—Real World Experiences; State Library of Queensland: Brisbane, Australia, 2011. [Google Scholar]
- Rutherford, J. Informational City. International Encyclopedia of Human Geography, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–320. [Google Scholar]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Chang, D.L.; Marques, J.; da Costa, E.M.; Selig, P.M.; Yigitcanlar, T. Knowledge-based, smart and sustainable cities: A provocation for a conceptual framework. J. Open Innov. Technol. Mark. Complex. 2018, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Akande, A.; Cabral, P.; Gomes, P.; Casteleyn, S. The Lisbon Ranking for Smart Sustainable Cities in Europe. Sustain. Cities Soc. 2018, 44, 475–487. [Google Scholar] [CrossRef]
- Huovila, A.; Bosch, P.; Airaksinen, M. Comparative analysis of standardized indicators for Smart sustainable cities: What indicators and standards to use and when? Cities 2019, 89, 141–153. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Han, H.; Kamruzzaman, M.; Ioppolo, G.; Sabatini-Marques, J. The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build? Land Use Policy 2019, 88, 104187. [Google Scholar] [CrossRef]
- Höjer, M.; Wangel, J. Smart Sustainable Cities: Definition and Challenges. In ICT Innovations for Sustainability, Advances in Intelligent Systems and Computing, 310; Hilty, L.M., Aebischer, B., Eds.; Springer: Cham, Switzerland, 2015; pp. 333–349. [Google Scholar]
- Yigitcanlar, T.; Kamruzzaman, M.D.; Foth, M.; Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2018, 45, 348–365. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Foth, M.; Kamruzzaman, M. Towards post-anthropocentric cities: Reconceptualizing smart cities to evade urban ecocide. J. Urban Technol. 2019, 26, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Bibri, S.E.; Krogstie, J. On the Social Shaping Dimensions of Smart Sustainable Cities: A Study in Science, Technology, and Society. Sustain. Cities Soc. 2017, 29, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Hancke, G.P.; Silva, B.; Hancke, G.P., Jr. The Role of Advanced Sensing in Smart Cities. Sensors 2012, 13, 393–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yigitcanlar, T.; Kankanamge, N.; Vella, K. How are the smart city concepts and technologies perceived and utilized? A systematic geo-twitter analysis of smart cities in Australia. J. Urban Technol. 2020, 1–20. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Sekimoto, Y.; Seto, T.; Fukushima, Y.; Maeda, M. My City Forecast: Urban planning communication tool for citizen with national open data. Comput. Environ. Urban Syst. 2019, 77. [Google Scholar] [CrossRef]
- Yamagata, Y.; Yang, P.P.J.; Chang, S.; Tobey, M.B.; Binder, R.B.; Fourie, P.J.; Jittrapirom, P.; Kobashi, T.; Yoshida, T.; Aleksejeva, J. Urban systems and the role of big data; Urban Systems Design: Bermondsey, UK; London, UK, 2020. [Google Scholar]
- Few, S. Information Dashboard Design: The Effective Visual Communication of Data; O’Reilly Media: Newton, MA, USA, 2006. [Google Scholar]
- Kitchin, R. The real time city? Big data and smart urbanis. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kitchin, R.; McArdle, G. Urban Data and City Dashboards: Six Key Issues. In Data and the City; Routledge: London, UK, 2016; pp. 1–21. [Google Scholar]
- Pettit, C.; Leao, S.Z. Dashboard. In Encyclopedia of Big Data; Schintler, L.A., McNeely, C.L., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Karvonen, A.; Cugurullo, F.; Caprotti, F. Introduction: Situating Smart Cities. In Inside Smart Cities: Place, Politics and Urban Innovation; Karvonen, A., Cugurullo, F., Caprotti, F., Eds.; Routledge: London, UK, 2019; pp. 1–12. [Google Scholar]
- Sharma, A.; Singh, P.K.; Kumar, Y. An Integrated Fire Detection System using IoT and Image processing Technique for Smart Cities. Sustain. Cities Soc. 2020, 61, 102332. [Google Scholar] [CrossRef]
- Mocnej, J.; Pekar, A.; Seah, W.K.G.; Papcun, P.; Kajati, E.; Cupkova, D.; Koziorek, J.; Zolotova, I. Quality-enabled decentralized IoT architecture with efficient resources utilization. Robot. Comput. Integr. Manuf. 2021, 67, 102001. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Velibeyoglu, K.; Baum, S. Creative Urban Regions: Harnessing Urban Technologies to Support Knowledge City Initiatives; IGI Global: Hersey, PA, USA, 2008. [Google Scholar]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Saija, G.; Shi, L. Sustainable Local Development and Environmental Governance: A Strategic Planning Experience. Sustainability 2016, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Wijs, L.; Witte, P.; Geertman, S. How smart is smart? Theoretical and empirical considerations on implementing smart city objectives—A case study of Dutch railway station areas. Eur. J. Soc. Sci. Res. 2016, 29, 424–441. [Google Scholar] [CrossRef]
- Gil, O.; Cortés-Cediel, M.E.; Cantador, I. Citizen participation and the rise of digital media platforms in smart governance and smart cities. Int. J. E Plan. Res. 2019, 8, 19–34. [Google Scholar] [CrossRef]
- Ruhlandt, R.W.S. The governance of smart cities: A systematic literature review. Cities 2018, 81, 1–23. [Google Scholar] [CrossRef]
- Dowling, R.; McGuirk, P.; Gillon, C. Strategic or Piecemeal? Smart City Initiatives in Sydney and Melbourne. Urban Policy Res. 2019, 37, 429–441. [Google Scholar] [CrossRef]
- Cugurullo, F. Exposing smart cities and eco-cities: Frankenstein urbanism and the sustainability challenges of the experimental city. Environ. Plan. A Econ. Space 2018, 50, 73–92. [Google Scholar] [CrossRef]
- European Commission (EC). Available online: www.ec.europa.eu (accessed on 6 June 2020).
- Johnson, P.A.; Robinson, P.J.; Philpot, S. Type, tweet, tap, and pass: How smart city technology is creating a transactional citizen. Gov. Inf. Q. 2020, 37, 101414. [Google Scholar] [CrossRef]
- Yeh, H. The effects of successful ICT-based smart city services: From citizens’ perspectives. Gov. Inf. Q. 2017, 34, 556–565. [Google Scholar] [CrossRef]
- Axelsson, K.; Granath, M. Stakeholders’ stake and relation to smartness in smart city development: Insights from a Swedish city planning project. Gov. Inf. Q. 2018, 35, 693–702. [Google Scholar] [CrossRef]
- Cardullo, P.; Kitchin, R. Being a ‘citizen’ in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Ahad, M.A.; Paiva, S.; Tripathi, G.; Feroz, N. Enabling technologies and sustainable smart cities. Sustain. Cities Soc. 2020, 61, 102301. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Li, Z.; Ganji, M. Smart cities for a sustainable urbanization: Illuminating the need for establishing smart urban infrastructures. IEEE Electrif. Mag. 2018, 6, 16–33. [Google Scholar] [CrossRef]
- De, M.; Sikarwar, S.; Kumar, V. Strategies for Inducing Intelligent Technologies to Enhance Last Mile Connectivity for Smart Mobility in Indian cities. In Progress in Advanced Computing and Intelligent Engineering; Springer: Singapore, 2019; pp. 373–384. [Google Scholar] [CrossRef]
- Cugurullo, F.; Acheampong, R.A.; Gueriau, M.; Dusparic, I. The transition to autonomous cars, the redesign of cities and the future of urban sustainability. Urban Geogr. 2020, 1–27. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Cugurullo, F. Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 349–375. [Google Scholar] [CrossRef] [Green Version]
- Syed, L.; Jabeen, S.; Manimala, S.; Alsaeedi, A. Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Future Gener. Comput. Syst. 2019, 101, 136–151. [Google Scholar] [CrossRef]
- Huawei. Available online: www.e.huawei.com (accessed on 6 June 2020).
- Huawei Digital Platform. Available online: https://e.huawei.com/en/digital-platform/smart-city (accessed on 6 June 2020).
- Cisco Kinetic for Cities. Available online: www.blogs.cisco.com (accessed on 6 June 2020).
- The Cisco Smart + Connected Digital Platform. Available online: www.cisco.com (accessed on 6 June 2020).
- Zhang, J.; Hua, X.S.; Huang, J.; Shen, X.; Chen, X.; Zhou, Q.; Fu, Z.; Zhao, Y. City Brain: Practice of Large-Scale Artificial Intelligence in the Real World. In IET Smart Cities; The Institution of Engineering and Technology: Beijing, China, 2019. [Google Scholar]
- Alibaba City Event Detection and Smart Processing. Available online: www.alibabacloud.com (accessed on 6 June 2020).
- Smart Citizen Kit. Available online: www.smartcitizen.me (accessed on 6 June 2020).
- Camprodon, G.; Gonzalez, O.; Barberan, V.; Pérez, M.; Smari, V.; de Heras, M.A.; Bizzotto, A. Smart Citizen Kit and Station: An open environmental monitoring system for citizen participation and scientific experimentation. HardwareX 2019, 6, e00070. [Google Scholar] [CrossRef]
- Gutiérrez Bayo, J. International Case Studies of Smart Cities: Santander, Spain; Inter-American Development Bank: Washington, DC, USA, 2016. [Google Scholar]
- Smart City Dashboard Developed by Deutsche Telekom for Hungary Subsidiary. Available online: www.t-system.hu (accessed on 7 June 2020).
- Deutsche Telekom City of Hamburg. Available online: www.telekom.com (accessed on 7 June 2020).
- Smart Street Lighting Models Developed by Deutsche Telekom. Available online: www.deutschetelekom.com (accessed on 7 June 2020).
- LuxTurrim5G Smart Pole. Available online: www.luxturrim5g.com (accessed on 8 June 2020).
- Alvarez, O.; Markendahl, J.; Martinez, L. Quality of Experience (QoE)—based service differentiation in the smart cities context: Business Analysis. In Proceedings of the ICCS 2015—International Conference on City Sciences. New Architectures, Infrastructures and Services for Future Cities, Tongji University, Shanghai, China, 4–5 June 2015. [Google Scholar]
- Allen, A.; Lampis, A.; Swilling, M. Untamed Urbanisms, Routledge Advances in Regional Economics, Science and Policy; Taylor & Francis: Abingdon, UK, 2016. [Google Scholar]
- Hollands, R.G. Critical interventions into the corporate smart city. Camb. J. Reg. Econ. Soc. 2015, 8, 61–77. [Google Scholar] [CrossRef]
- Shahrokni, H.; Lazarevic, D.; Brandt, N. Smart urban metabolism: Towards a real-time understanding of the energy and material flows of a city and its citizens. J. Urban Technol. 2015, 22, 65–86. [Google Scholar] [CrossRef]
- Bifulco, F.; Tregua, M.; Amitrano, C.C.; D’Auria, A. ICT and sustainability in smart cities management. Int. J. Public Sect. Manag. 2016, 29, 132–147. [Google Scholar] [CrossRef]
- Trilles, S.; Calia, A.; Belmonte, O.; Torres-Sospedra, J.; Montoliu, R.; Huerta, J. Deployment of an open sensorized platform in a smart city context. Future Gener. Comput. Syst. 2017, 76, 221–233. [Google Scholar] [CrossRef]
- Jain, B.; Brar, G.; Malhotra, J.; Rani, S. A novel approach for smart cities in convergence to wireless sensor networks. Sustain. Cities Soc. 2017, 35, 440–448. [Google Scholar] [CrossRef]
- Li, A.; Shahidehpour, M. Deployment of cybersecurity for managing traffic efficiency and safety in smart cities. Electr. J. 2017, 30, 52–61. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. A framework for Internet of Things-enabled smart government: A case of IoT cybersecurity policies and use cases in U.S. Gov. Inf. Q. 2019, 36, 346–357. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Nussbaum, B.H.; Anjomshoa, F.; Kantarci, B.; Soyata, T. A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities. Sustain. Cities Soc. 2019, 50, 101660. [Google Scholar] [CrossRef]
- Certomà, C.; Corsini, F.; Frey, M. Hyperconnected, receptive and do-it-yourself city. An investigation into the European “imaginary” of crowdsourcing for urban governance. Technol. Soc. 2020, 61, 101229. [Google Scholar] [CrossRef]
- De Guimarães, J.C.F.; Severo, E.A.; Junior, L.A.F.; Da Costa, W.P.L.B.; Salmonia, F.T. Governance and quality of life in smart cities: Towards sustainable development goals. J. Clean. Prod. 2020, 253, 119926. [Google Scholar] [CrossRef]
- Wu, W.N. Determinants of citizen-generated data in a smart city: Analysis of 311 system user behavior. Sustain. Cities Soc. 2020, 59, 102167. [Google Scholar] [CrossRef]
- Puiu, D.; Barnaghi, P.; Tonjes, R.; Kumper, D.; Ali, M.I.; Mileo, A.; Parreira, J.X.; Fischer, M.; Kolozali, S.; Farajidavar, N. Citypulse: Large scale data analytics framework for smart cities. IEEE Access 2016, 4, 1086–1108. [Google Scholar] [CrossRef]
- CityPulse. Available online: www.ict-citypulse.eu/page/ (accessed on 8 June 2020).
- Jiang, D. The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun. 2020, 150, 158–166. [Google Scholar] [CrossRef]
- Babar, M.; Arif, F.; Jan, M.A.; Tan, Z.; Khan, F. Urban data management system: Towards Big Data analytics for Internet of Things based smart urban environment using customized Hadoop. Future Gener. Comput. Syst. 2019, 96, 398–409. [Google Scholar] [CrossRef]
- Engin, Z.; van Dijk, J.; Lan, T.; Longley, P.A.; Treleaven, P.; Batty, M.; Penn, A. Data-driven urban management: Mapping the landscape. J. Urban Manag. 2020, 9, 140–150. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Rethinking Sustainable Development: Urban Management, Engineering, and Design; IGI Global: Hersey, PA, USA, 2010. [Google Scholar]
- Sadgali, I.; Sael, N.; Benabbou, F. Detection of credit card fraud: State of art. Int. J. Comput. Sci. Netw. Secur. 2018, 18, 76–83. [Google Scholar]
- Borrion, H.; Ekblom, P.; Alrajeh, D.; Borrion, A.L.; Keane, A.; Koch, D.; Toubaline, S. The Problem with Crime Problem-Solving: Towards a Second Generation Pop? Br. J. Criminol. 2019, 60, 219–240. [Google Scholar] [CrossRef]
- Laufs, J.; Borrion, H.; Bradford, B. Security and the smart city: A systematic review. Sustain. Cities Soc. 2020, 55, 102023. [Google Scholar] [CrossRef]
- Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garino, P.; Nardone, M.; Pralio, B.; Venturini, L. Monitoring the citizens’ perception on urban security in smart City environments. In Proceedings of the DAta Mining And Smart Cities Applications Workshop 2015 Co-Located with the 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, 13–17 April 2015; pp. 112–116. [Google Scholar]
- Rothkrantz, L. Person Identification by Smart Cameras; 2017 Smart City Symposium Prague (SCSP): Prague, Czech Republic, 2017; pp. 1–6. [Google Scholar]
- Sajjad, M.; Nasir, M.; Muhammad, K.; Khan, S.; Jan, Z.; Sangaiah, A.K.; Baik, S.W. Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Gener. Comput. Syst. 2020, 108, 995–1007. [Google Scholar] [CrossRef]
- Parra, J.; Lopez, R. Application of Predictive Analytics for Crime Prevention: The Case of the City of San Francisco. In Police: Global Perceptions, Performance and Ethical Challenges; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 85–109. [Google Scholar]
- Calzada, I. (Smart) citizens from data providers to decision-makers? The case study of Barcelona. Sustainability 2018, 10, 3252. [Google Scholar] [CrossRef] [Green Version]
- Carter, D.M. Cyberspace and Cyberculture. International Encyclopedia of Human Geography, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–147. [Google Scholar]
- Kumar, H.; Singh, M.K.; Gupta, M.P.; Madaan, J. Moving towards smart cities: Solutions that lead to the Smart City Transformation Framework. Technol. Forecast. Soc. Chang. 2020, 153, 119281. [Google Scholar] [CrossRef]
- Sidewalk Labs. Available online: www.sidewalklabs.com (accessed on 11 June 2020).
- SmartROAD. Available online: www.hamburg-port-authority.de/en/hpa-360/smartport/ (accessed on 11 June 2020).
- Gelsenkirchen: A Small, Smart City with Big Plans. Available online: e.huawei.com/en/case-studies/global/2017/201709071445 (accessed on 11 June 2020).
- Lighthouse City. Available online: www.iotjournal.com (accessed on 11 June 2020).
- Smart+Connected Communities. Available online: www.newsroom.cisco.com (accessed on 11 June 2020).
- Ipsos. (2019). Smarter Digital City 3.0. Report commissioned by Google. Available online: https://services.google.com/fh/files/misc/google_smarter_digital_city_3_whitepaper.pdf (accessed on 2 July 2020).
- T-City Friedrichshafen. Available online: www.t-city.de/en (accessed on 11 June 2020).
- Charlotte Sustainability City. Available online: www.americaninno.com (accessed on 12 June 2020).
- Smarter Cities Challenge Report; IBM: Dublin, Ireland, 2015.
- Coletta, C.; Heaphy, L.; Kitchin, R. From the accidental to articulated smart city: The creation and work of ‘Smart Dublin’. Eur. Urban Reg. Stud. 2019, 26, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Aspern Smart City Research. Available online: www.ascr.at (accessed on 12 June 2020).
- Stockholm Royal Seaport’s Smart Energy City Project. Available online: www.ericsson.com (accessed on 12 June 2020).
- Factory of the Future. Available online: www.ericsson.com (accessed on 12 June 2020).
- Espoo Innovation Garden. Available online: www.espooinnovationgarden.fi/en/espoo (accessed on 24 July 2020).
- Centre of Excellence. Available online: www.blogs.oracle.com (accessed on 15 June 2020).
- Bari Matera 5G. Available online: www.barimatera5g.it (accessed on 15 June 2020).
- Green Energy Industrial Complex. Available online: www.tecnologiaericerca.com (accessed on 15 June 2020).
- Hu, R. The State of Smart Cities in China: The Case of Shenzhen. Energies 2019, 12, 4375. [Google Scholar] [CrossRef] [Green Version]
- Guiyang Sunac City. Available online: www.ekistics.com (accessed on 16 June 2020).
- Valencia Smart City Platform. Available online: www.smartcity.valencia.es (accessed on 16 June 2020).
Economic, Social and Privacy Implications | E-government | Health and Assisted Living | Intelligent Transportation Systems | Smart Grids, Energy Efficiency, and Environment | |
---|---|---|---|---|---|
Quality of Experience | Usability | Usability | Usability | Usability | Usefulness |
Personalization | Personalization | Availability | Usefulness | Accessibility | |
Transparency | Transparency | Personalization | Effectiveness | Personalization | |
Effectiveness | Accessibility | ||||
Accessibility | Efficiency | ||||
Efficiency |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, G.; L’Abbate, P.; Liao, W.; Yigitcanlar, T.; Ioppolo, G. Understanding Sensor Cities: Insights from Technology Giant Company Driven Smart Urbanism Practices. Sensors 2020, 20, 4391. https://doi.org/10.3390/s20164391
D’Amico G, L’Abbate P, Liao W, Yigitcanlar T, Ioppolo G. Understanding Sensor Cities: Insights from Technology Giant Company Driven Smart Urbanism Practices. Sensors. 2020; 20(16):4391. https://doi.org/10.3390/s20164391
Chicago/Turabian StyleD’Amico, Gaspare, Pasqua L’Abbate, Wenjie Liao, Tan Yigitcanlar, and Giuseppe Ioppolo. 2020. "Understanding Sensor Cities: Insights from Technology Giant Company Driven Smart Urbanism Practices" Sensors 20, no. 16: 4391. https://doi.org/10.3390/s20164391
APA StyleD’Amico, G., L’Abbate, P., Liao, W., Yigitcanlar, T., & Ioppolo, G. (2020). Understanding Sensor Cities: Insights from Technology Giant Company Driven Smart Urbanism Practices. Sensors, 20(16), 4391. https://doi.org/10.3390/s20164391