Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodermal Activity
2.2. Data Acquisition and Empatica E4 Device
2.3. Participants
2.4. Self-Assessment Manikins
2.5. Music Stimuli
2.6. Experimental Design
2.7. Electrodermal Activity Preprocessing
2.8. Feature Extraction and Analysis
3. Results and Discussion
3.1. Direct Arousal Detection from Electrodermal Activity
3.2. Comparison of Arousal Detection and SAM Questionnaire Responses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EDA | Electrodermal Activity |
IRF | Impulse Response Function |
KNN | K-Nearest Neighbor |
SAM | Self-Assessment Mannequin |
SC | Skin Conductance |
SCL | Skin Conductance level |
SCR | Skin Conductance response |
SVM | Support Vector Machine |
References
- Sánchez-Reolid, R.; Martínez-Rodrigo, A.; López, M.T.; Fernández-Caballero, A. Deep support vector machines for the identification of stress condition from electrodermal activity. Int. J. Neural Syst. 2020, 30, 2050031. [Google Scholar] [CrossRef] [PubMed]
- Picard, R.W.; Fedor, S.; Ayzenberg, Y. Multiple arousal theory and daily-life electrodermal activity asymmetry. Emot. Rev. 2016, 8, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.C.; Fernández-Caballero, A.; Castro-González, Á.; Salichs, M.A.; López, M.T. A Framework for Recognizing and Regulating Emotions in the Elderly. Ambient Assisted Living and Daily Activities; Pecchia, L., Chen, L.L., Nugent, C., Bravo, J., Eds.; Springer: Heidelberg, Germany, 2014; pp. 320–327. [Google Scholar]
- Picard, R.W. Affective Computing; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Górriz, J.M.; Ramírez, J.; Ortíz, A.; Martínez-Murcia, F.J.; Segovia, F.; Suckling, J.; Leming, M.; Zhang, Y.-D.; Álvarez-Sánchez, J.R.; Bologna, G. Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing 2020, 410, 237–270. [Google Scholar]
- Jamil, F.; Ahmad, S.; Iqbal, N.; Kim, D.H. Towards a Remote Monitoring of Patient Vital Signs Based on IoT-Based Blockchain Integrity Management Platforms in Smart Hospitals. Sensors 2020, 20, 2195. [Google Scholar] [CrossRef] [Green Version]
- Pala, D.; Caldarone, A.A.; Franzini, M.; Malovini, A.; Larizza, C.; Casella, V.; Bellazzi, R. Deep Learning to Unveil Correlations between Urban Landscape and Population Health. Sensors 2020, 20, 2105. [Google Scholar] [CrossRef] [Green Version]
- Rathore, H.; Mohamed, A.; Guizani, M. A Survey of Blockchain Enabled Cyber-Physical Systems. Sensors 2020, 20, 282. [Google Scholar] [CrossRef] [Green Version]
- Hazer-Rau, D.; Meudt, S.; Daucher, A.; Spohrs, J.; Hoffmann, H.; Schwenker, F.; Traue, H.C. The uulmMAC Database—A Multimodal Affective Corpus for Affective Computing in Human-Computer Interaction. Sensors 2020, 20, 2308. [Google Scholar] [CrossRef] [Green Version]
- Pham, S.; Yeap, D.; Escalera, G.; Basu, R.; Wu, X.; Kenyon, N.J.; Hertz-Picciotto, I.; Ko, M.J.; Davis, C.E. Wearable sensor system to monitor physical activity and the physiological effects of heat exposure. Sensors 2020, 20, 855. [Google Scholar] [CrossRef] [Green Version]
- Ying Wah, T.; Gopal Raj, R.; Lakhan, A. A Novel Cost-Efficient Framework for Critical Heartbeat Task Scheduling Using the Internet of Medical Things in a Fog Cloud System. Sensors 2020, 20, 441. [Google Scholar]
- Steinberger, F.; Schroeter, R.; Watling, C.N. From road distraction to safe driving: Evaluating the effects of boredom and gamification on driving behaviour, physiological arousal, and subjective experience. Comput. Hum. Behav. 2017, 75, 714–726. [Google Scholar] [CrossRef] [Green Version]
- Azami, P.; Jan, T.; Iranmanesh, S.; Ameri Sianaki, O.; Hajiebrahimi, S. Determining the Optimal Restricted Driving Zone Using Genetic Algorithm in a Smart City. Sensors 2020, 20, 2276. [Google Scholar]
- Fernández-Caballero, A.; Martínez-Rodrigo, A.; Pastor, J.M.; Castillo, J.C.; Lozano-Monasor, E.; López, M.T.; Zangróniz, R.; Latorre, J.M.; Fernández-Sotos, A. Smart environment architecture for emotion recognition and regulation. J. Biomed. Informatics 2016, 64, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Lay-Ekuakille, A.; Mukhopadhyay, S.C. Wearable and Autonomous Biomedical Devices and Systems for Smart Environment; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [Google Scholar] [CrossRef]
- Bakker, I.; van der Voordt, T.; Vink, P.; de Boon, J. Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr. Psychol. 2014, 33, 405–421. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; Zangróniz, R.; Pastor, J.M.; Fernández-Caballero, A. Arousal Level Classification in the Ageing Adult by Measuring Electrodermal Skin Conductivity. Ambient Intelligence for Health; Bravo, J., Hervás, R., Villarreal, V., Eds.; Springer: Heidelberg, Germany, 2015; pp. 213–223. [Google Scholar]
- Wang, C.A.; Baird, T.; Huang, J.; Coutinho, J.D.; Brien, D.C.; Munoz, D.P. Arousal effects on pupil size, heart rate, and skin conductance in an emotional face task. Front. Neurol. 2018, 9, 1029. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. The electrodermal system. In Handbook of Psychophysiology; Cambridge University Press: Cambridge, UK, 2007; Volume 1, pp. 159–181. [Google Scholar]
- Salimpoor, V.N.; Benovoy, M.; Longo, G.; Cooperstock, J.R.; Zatorre, R.J. The rewarding aspects of music listening are related to degree of emotional arousal. PLOS ONE 2009, 4, 1–14. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Morris, J.D. Observations: SAM: The Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response. J. Advert. Res. 1995, 35, 63–68. [Google Scholar]
- Agrawal, A.; An, A. Unsupervised emotion detection from text using semantic and syntactic relations. In Proceedings of the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Macau, China, 4–7 December 2012; pp. 346–353. [Google Scholar]
- Canales, L.; Martínez-Barco, P. Emotion detection from text: A survey. In Proceedings of the Workshop on Natural Language Processing in the 5th Information Systems Research Working Days, Quito, Ecuador, 20–24 October 2014; pp. 37–43. [Google Scholar]
- Fernández-Sotos, A.; Martínez-Rodrigo, A.; Moncho-Bogani, J.; Latorre, J.M.; Fernández-Caballero, A. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study Using a Brain–Computer Interface. Int. J. Neural Syst. 2018, 28, 1750054. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; Fernández-Sotos, A.; Latorre, J.M.; Moncho-Bogani, J.; Fernández-Caballero, A. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form. Front. Neuroinformatics 2017, 11, 29. [Google Scholar] [CrossRef]
- Fernández-Sotos, A.; Fernández-Caballero, A.; Latorre, J.M. Influence of Tempo and Rhythmic Unit in Musical Emotion Regulation. Front. Comput. Neurosci. 2016, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Sotos, A.; Fernández-Caballero, A.; Latorre, J.M. Elicitation of Emotions through Music: The Influence of Note Value. In Artificial Computation in Biology and Medicine; Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H., Eds.; Springer: Heidelberg, Germany, 2015; pp. 488–497. [Google Scholar]
- Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 1978, 85, 59. [Google Scholar] [CrossRef]
- Serrano, J.P.; Latorre, J.M.; Gatz, M.; Montanes, J. Life review therapy using autobiographical retrieval practice for older adults with depressive symptomatology. Psychol. Aging 2004, 19, 272. [Google Scholar] [CrossRef]
- Latorre, J.M.; Ricarte, J.J.; Serrano, J.P.; Ros, L.; Navarro, B.; Aguilar, M.J. Performance in autobiographical memory of older adults with depression symptoms. Appl. Cogn. Psychol. 2013, 27, 167–172. [Google Scholar] [CrossRef]
- Charles, S.T.; Luong, G. Emotional experience across adulthood: The theoretical model of strength and vulnerability integration. Curr. Dir. Psychol. Sci. 2013, 22, 443–448. [Google Scholar] [CrossRef]
- Fernández-Caballero, A.; González, P.; Navarro, E. Gerontechnologies–Current achievements and future trends. Expert Syst. 2017, 34, e12203. [Google Scholar] [CrossRef]
- Siedlecka, E.; Denson, T.F. Experimental methods for inducing basic emotions: A qualitative review. Emot. Rev. 2019, 11, 87–97. [Google Scholar] [CrossRef]
- Critchley, H.; Nagai, Y.; Electrodermal Activity (EDA). Encyclopedia of Behavioral Medicine; Springer: New York, NY, USA, 2013; pp. 666–669. [Google Scholar]
- Lang, P.J.; Greenwald, M.K.; Bradley, M.M.; Hamm, A.O. Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology 1993, 30, 261–273. [Google Scholar] [CrossRef]
- Sarchiapone, M.; Gramaglia, C.; Iosue, M.; Carli, V.; Mandelli, L.; Serretti, A.; Marangon, D.; Zeppegno, P. The association between electrodermal activity (EDA), depression and suicidal behaviour: A systematic review and narrative synthesis. BMC Psychiatry 2018, 18, 22. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Reolid, R.; Martínez-Rodrigo, A.; Fernández-Caballero, A. Stress Identification from Electrodermal Activity by Support Vector Machines. In Understanding the Brain Function and Emotions; Springer: Heidelberg, Germany, 2019; pp. 202–211. [Google Scholar]
- Zangróniz, R.; Martínez-Rodrigo, A.; Pastor, J.M.; López, M.T.; Fernández-Caballero, A. Electrodermal activity sensor for classification of calm/distress condition. Sensors 2017, 17, 2324. [Google Scholar] [CrossRef] [Green Version]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohino-Herranz, I.; Gil-Pita, R.; Rosa-Zurera, M.; Seoane, F. Activity Recognition Using Wearable Physiological Measurements: Selection of Features from a Comprehensive Literature Study. Sensors 2019, 19, 5524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva Moreira, P.; Chaves, P.; Dias, R.; Dias, N.; Almeida, P.R. Validation of Wireless Sensors for Psychophysiological Studies. Sensors 2019, 19, 4824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warriner, A.B.; Kuperman, V.; Brysbaert, M. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 2013, 45, 1191–1207. [Google Scholar] [CrossRef] [Green Version]
- De Santiago Ortega, P.P. Flamenco: De la marginalidad social a la referencia cultural pasando por la apropiación política. Revista de Investigación sobre Flamenco La Madrugá 2018, 15, 91–115. [Google Scholar]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodrigo, A.; Fernández-Aguilar, L.; Zangróniz, R.; Latorre, J.M.; Pastor, J.M.; Fernández-Caballero, A. Film mood induction and emotion classification using physiological signals for health and wellness promotion in older adults living alone. Expert Syst. 2020, 37, e12425. [Google Scholar] [CrossRef]
- Piñeiro Blanca, J. Instrumentalización política de la música desde el franquismo hasta la consolidación de la democracia en España. Revista del Centro de Estudios Históricos de Granada y su Reino 2013, 25, 237–262. [Google Scholar]
- Muñiz Velázquez, J.A. La música en el sistema propagandístio franquista. Hist. Comun. Soc. 1998, 3, 343–363. [Google Scholar]
- Iglesias, I. (Re)construyendo la identidad musical española: el jazz y el discurso cultural del franquismo durante la Segunda Guerra Mundial. Hist. Actual Online 2010, 23, 119–135. [Google Scholar]
- Al Machot, F.; Ali, M.; Ranasinghe, S.; Mosa, A.H.; Kyandoghere, K. Improving subject-independent human emotion recognition using electrodermal activity sensors for active and assisted living. In Proceedings of the 11th Pervasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 25-29 June 2018; pp. 222–228. [Google Scholar]
- Amalan, S.; Shyam, A.; Anusha, A.; Preejith, S.; Tony, A.; Jayaraj, J.; Mohanasankar, S. Electrodermal activity based classification of induced stress in a controlled setting. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications, Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Greco, A.; Valenza, G.; Citi, L.; Scilingo, E.P. Arousal and valence recognition of affective sounds based on electrodermal activity. IEEE Sens. J. 2016, 17, 716–725. [Google Scholar] [CrossRef]
- Silveira, F.; Eriksson, B.; Sheth, A.; Sheppard, A. Predicting audience responses to movie content from electro-dermal activity signals. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; pp. 707–716. [Google Scholar]
- Wang, J.S.; Lin, C.W.; Yang, Y.T.C. A k-nearest-neighbor classifier with heart rate variability feature-based transformation algorithm for driving stress recognition. Neurocomputing 2013, 116, 136–143. [Google Scholar] [CrossRef]
- Muñoz Expósito, J.; Galán, S.; Reyes, N.; Candeas, P.; Peña, F. Speech/music discrimination based on a new warped LPC-based feature and linear discriminant analysis. In Proceedings of the 7th International Conference on Digital Audio Effects, Naples, Italy, 5–8 October 2004. [Google Scholar]
- Bandara, D.; Song, S.; Hirshfield, L.; Velipasalar, S. A more complete picture of emotion using electrocardiogram and electrodermal activity to complement cognitive data. In Proceedings of the 10th International Conference on Augmented Cognition, Toronto, ON, Canada, 17–22 July 2016; pp. 287–298. [Google Scholar]
- Jang, E.H.; Park, B.J.; Kim, S.H.; Chung, M.A.; Park, M.S.; Sohn, J.H. Emotion classification based on bio-signals emotion recognition using machine learning algorithms. In Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo City, Hokkaido, Japan, 26–28 April 2014; Volume 3, pp. 1373–1376. [Google Scholar]
- Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Jeon, H.J.; Yu, H.Y.; Byun, S. Automatic detection of major depressive disorder using electrodermal activity. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Du, S. Psychological stress level detection based on electrodermal activity. Behav. Brain Res. 2018, 341, 50–53. [Google Scholar] [CrossRef]
- Cavallo, F.; Semeraro, F.; Mancioppi, G.; Betti, S.; Fiorini, L. Mood classification through physiological parameters. J. Ambient Intell. Humanized Comput. 2019, 106, 1–14. [Google Scholar] [CrossRef]
- Xin, S.Q.; Yahya, N.; Izhar, L.I. Classification of Neurological States from Biosensor Signals Based on Statistical Features. In Proceedings of the 2019 IEEE Student Conference on Research and Development, Perak, Malaysia, 15–17 October 2019; pp. 231–236. [Google Scholar]
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, Milan, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar]
- Gregory, A.H.; Varney, N. Cross-cultural comparisons in the affective response to music. Psychol. Music. 1996, 24, 47–52. [Google Scholar] [CrossRef]
- Demorest, S.M.; Morrison, S.J.; Jungbluth, D.; Beken, M.N. Lost in translation: An enculturation effect in music memory performance. Music. Percept. 2008, 25, 213–223. [Google Scholar] [CrossRef]
- Pereira, C.S.; Teixeira, J.; Figueiredo, P.; Xavier, J.; Castro, S.L.; Brattico, E. Music and emotions in the brain: Familiarity matters. PlOS ONE 2011, 6, e27241. [Google Scholar] [CrossRef]
- Platz, F.; Kopiez, R.; Hasselhorn, J.; Wolf, A. The impact of song-specific age and affective qualities of popular songs on music-evoked autobiographical memories (MEAMs). Music. Sci. 2015, 19, 327–349. [Google Scholar] [CrossRef]
- Maksimainen, J.; Wikgren, J.; Eerola, T.; Saarikallio, S. The effect of memory in inducing pleasant emotions with musical and pictorial stimuli. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
Musical Genre | Style |
---|---|
Rock/Jazz | Twist and Swing |
Cuban | Bolero and Habanera |
Spanish Folklore | Pasodoble and Murcian jota |
Flamenco | Fandango and Petenera |
Analysis | Features |
---|---|
Temporal | M, SD, MA, MI, DR, D1, D2, D1M, D2M, D1SD, D2SD |
Morphological | AL, IN, AP, RMS, IL, EL |
Statistical | SK, KU, MO |
Frequency | F1, F2, F3 |
Type | Feature | Neutral | Flamenco | Cuban | Spanish Folklore | Rock/Jazz |
---|---|---|---|---|---|---|
Temp. | M | 5.53 (4.00) | 10.01 (6.62) | 8.34 (6.60) | 13.01 (8.62) | 7.34 (1.80) |
SD | 4.52 (4.76) | 6.34 (2.79) | 6.10 (1.70) | 8.69 (5.50) | 6.42 (3.40) | |
MA | 28.43 (26.67) | 33.32 (6.23) | 34.32 (5.20) | 37.10 (1.82) | 35.51 (4.24) | |
MI | 0.51 (0.13) | 0.81 (0.60) | 0.64 (0.51) | 0.66 (0.38) | 0.66 (0.38) | |
DR | 28.43 (6.67) | 29.79 (6.21) | 34.83 (17.21) | 25.83 (2.69) | 29.82 (6.43) | |
D1 | 0.98 (0.14) | 1.13 (0.45) | 1.07 (0.23) | 1.09 (0.28) | 1.03 (0.07) | |
D2 | 0.56 (0.20) | 0.71 (0.38) | 0.67 (0.51) | 0.86 (0.54) | 0.71 (0.54) | |
D1M | 0.86 (0.13) | 0.90 (0.12) | 0.74 (0.44) | 0.93 (0.59) | 0.74 (0.44) | |
D2M | 0.45 (0.17) | 0.426 (0.02) | 0.48 (0.17) | 0.52 (0.26) | 0.55 (0.31) | |
D1SD | 0.99 (0.96) | 1.23 (0.36) | 1.43 (0.29) | 1.40 (0.21) | 1.40 (0.21) | |
D2SD | 0.29 (0.01) | 0.34 (0.12) | 0.56 (0.39) | 0.56 (0.39) | 0.36 (0.12) | |
Morph. | AL | 14,049.0 (99.8) | 13,950.4 (388.4) | 13,850.4 (606.3) | 13,950.4 (348.6) | 14,450.4 (890.0) |
IN | 193.98 (148.38) | 186.98 (64.76) | 245.77 (86.67) | 246.77 (115.67) | 230.98 (75.34) | |
AP | 4.56 (9.33) | 8.17 (1.97) | 4.56 (9.33) | 8.17 (3.12) | 2.17 (2.12) | |
RMS | 7.14 (6.23) | 8.96 (4.23) | 10.96 (7.34) | 9.80 (6.32) | 8.25 (6.34) | |
IL | 5.50 (4.14) | 6.32 (4.80) | 5.17 (2.80) | 7.43 (2.87) | 6.96 (4.23) | |
EL | 0.065 (0.0013) | 0.074 (0.049) | 0.085 (0.054) | 0.079 (0.039) | 0.045 (0.099) | |
Stat. | SK | 1.18 (0.98) | 1.45 (0.89) | 1.82(1.72) | 1.69 (0.96) | 1.82 (1.79) |
KU | 1.65 (1.09) | 2.67 (2.45) | 1.87 (1.02) | 1.89 (1.04) | 1.40 (1.34) | |
MO | 2.10 (4.06) | 4.21 (3.87) | 3.44 (0.24) | 4.01 (3.87) | 3.8 (1.76) | |
Freq. | F1 | 2.90 (0.29) | 3.60 (1.84) | 3.28 (1.99) | 2.78 (0.92) | 3.04 (1.35) |
F2 | 0.15 (0.32) | 0.20 (0.04) | 0.29 (0.12) | 0.24 (0.13) | 0.19 (0.02) | |
F3 | 0.92 (0.37) | 0.79 (0.54) | 0.98 (0.26) | 0.98 (0.26) | 1.15 (0.64) |
Type | Features | Flamenco | Cuban | Spanish Folklore | Rock/Jazz |
---|---|---|---|---|---|
Temporal | M | 0.004 | 0.025 | 0.000 | 0.010 |
SD | 0.032 | 0.040 | 0.004 | 0.030 | |
MA | 0.021 | 0.016 | 0.041 | 0.116 | |
MI | 0.036 | 0.120 | 0.022 | 0.021 | |
DR | 0.340 | 0.014 | 0.034 | 0.320 | |
D1 | 0.048 | 0.032 | 0.260 | 0.050 | |
D2 | 0.032 | 0.211 | 0.001 | 0.116 | |
D1M | 0.160 | 0.116 | 0.442 | 0.116 | |
D2M | 0.320 | 0.424 | 0.120 | 0.070 | |
D1SD | 0.039 | 0.074 | 0.010 | 0.098 | |
D2SD | 0.032 | 0.042 | 0.004 | 0.023 | |
Morphological | AL | 0.034 | 0.010 | 0.040 | 0.010 |
IN | 1.100 | 0.065 | 0.080 | 0.766 | |
AP | 0.026 | 0.000 | 0.021 | 0.135 | |
RMS | 0.150 | 0.075 | 0.098 | 0.447 | |
IL | 0.420 | 0.687 | 0.012 | 0.121 | |
EL | 0.230 | 0.021 | 0.034 | 0.210 | |
Statistical | SK | 0.023 | 0.045 | 0.019 | 0.051 |
KU | 0.018 | 0.349 | 0.333 | 0.600 | |
MO | 0.013 | 0.042 | 0.034 | 0.010 | |
Frequential | F1 | 0.120 | 0.233 | 0.435 | 0.516 |
F2 | 0.320 | 0.011 | 0.110 | 0.432 | |
F3 | 0.210 | 0.434 | 0.434 | 0.053 |
Classifier | Type | Flamenco | Cuban | Spanish Folklore | Rock/Jazz |
---|---|---|---|---|---|
Regression | Logistic | 67.0 (0.26) | 64.0 (0.19) | 61.0 (1.20) | 60.0 (1.01) |
Discriminant | Linear | 57.0 (0.09) | 40.3 (0.03) | 46.3 (0.73) | 42.5 (1.47) |
Naïve Bayes | Gaussian | 70.6 (0.01) | 71.1 (0.50) | 70.6 (0.01) | 69.2 (0.11) |
Standard | 67.6 (0.45) | 70.0 (0.00) | 68.1 (0.82) | 69.2 (0.11) | |
Tree | Fine | 56.0 (0.12) | 69.1 (0.03) | 52.0 (0.02) | 40.1 (0.10) |
Medium | 75.0 (0.20) | 67.1 (0.00) | 78.0 (0.06) | 45.1 (0.27) | |
Coarse | 70.1 (0.00) | 70.1 (0.00) | 62.1 (0.00) | 52.1 (0.45) | |
Ensemble Tree | Boosted | 72.3 (0.04) | 69.7 (0.14) | 76.85 (0.23) | 67.3 (0.37) |
Bagged | 71.0 (0.01) | 67.9 (0.11) | 72.0 (0.00) | 68.1 (0.76) | |
RUS boosted | 73.0 (0.40) | 70.1 (0.50) | 70.9 (0.03) | 68.6 (1.20) | |
Subspace KNN | 74.5 (0.00) | 71.43 (0.32) | 72.1 (0.00) | 68.1 (0.20) | |
KNN | Fine | 76.0 (0.09) | 73.9 (0.10) | 76.0 (0.09) | 70.0 (0.00) |
Medium | 82.3 (0.05) | 80.2 (0.04) | 81.5 (0.00) | 76.09 (1.20) | |
Coarse | 80.4 (0.02) | 79.1 (0.40) | 77.1 (0.18) | 71.09 (1.60) | |
Cosine | 81.4 (0.13) | 77.1 (1.10) | 77.1 (1.80) | 68.18 (1.70) | |
Weighted | 80.9 (0.00) | 79.2 (0.06) | 80.9 (0.00) | 75.0 (0.00) | |
SVM | Linear | 78.0 (0.01) | 73.3 (0.63) | 79.1 (0.03) | 67.4 (0.60) |
Quadratic | 72.4 (0.13) | 72.4 (0.13) | 72.4 (0.13) | 62.0 (0.13) | |
Cubic | 76.4 (0.60) | 78.3 (0.54) | 80.4 (0.53) | 65.4 (0.30) | |
Radial (RBF) | 87.4 (0.00) | 81.4 (0.00) | 83.1 (0.01) | 67.3 (0.20) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomé-Tomás, A.; Sánchez-Reolid, R.; Fernández-Sotos, A.; Latorre, J.M.; Fernández-Caballero, A. Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. Sensors 2020, 20, 4788. https://doi.org/10.3390/s20174788
Bartolomé-Tomás A, Sánchez-Reolid R, Fernández-Sotos A, Latorre JM, Fernández-Caballero A. Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. Sensors. 2020; 20(17):4788. https://doi.org/10.3390/s20174788
Chicago/Turabian StyleBartolomé-Tomás, Almudena, Roberto Sánchez-Reolid, Alicia Fernández-Sotos, José Miguel Latorre, and Antonio Fernández-Caballero. 2020. "Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli" Sensors 20, no. 17: 4788. https://doi.org/10.3390/s20174788
APA StyleBartolomé-Tomás, A., Sánchez-Reolid, R., Fernández-Sotos, A., Latorre, J. M., & Fernández-Caballero, A. (2020). Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. Sensors, 20(17), 4788. https://doi.org/10.3390/s20174788