Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use
Abstract
:1. Introduction
2. Review of Literature
2.1. Theoretical Framework
2.2. Measuring Cognitive Load and Mental Workload
2.3. Using Physiological Data in Education Contexts
2.4. The Present Studies
3. Study 1
3.1. Methods
3.1.1. Measurement of Physiological Parameters
3.1.2. Transformation of Physiological Features
3.1.3. Experimental Design
3.1.4. Training and Testing of Classifiers
3.2. Results
Cognitive Task Prediction
3.3. Discussion
4. Study 2
4.1. Methods
4.1.1. Experimental Design
4.1.2. Training and Testing of Classifiers
4.2. Results
4.2.1. Statistical Modeling and Inference for Feature Importance
4.2.2. Prediction of Self-Reported Mental Focus
4.3. Discussion
5. Overall Discussion and Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Human Subjects
References
- De Jong, T. Cognitive load theory, educational research, and instructional design: Some food for thought. Instr. Sci. 2010, 38, 105–134. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.Z. (Ed.) Cognitive Load Measurement and Application: A Theoretical Framework for Meaningful Research and Practice; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Nourbakhsh, N.; Wang, Y.; Chen, F.; Calvo, R.A. Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In Proceedings of the 24th Australian Computer-Human Interaction Conference (ACM), Melbourne, Australia, 26–30 November 2012; pp. 420–423. [Google Scholar]
- Paas, F.; Van Merrienboer, J.J.G.; Adam, J.J. Measurement of Cognitive Load in Instructional Research. Percept. Mot. Ski. 1994, 79, 419–430. [Google Scholar] [CrossRef] [PubMed]
- De Avila, U.E.R.; Campos, F.R.D.F.; De Avila, U.E.R.; Leocadio-Miguel, M.A.; Araujo, J.F. 15 Minutes of Attention in Class: Variability of Heart Rate, Personality, Emotion and Chronotype. Creat. Educ. 2019, 10, 2428–2447. [Google Scholar] [CrossRef] [Green Version]
- Di Lascio, E.; Gashi, S.; Santini, S. Unobtrusive Assessment of Students’ Emotional Engagement during Lectures Using Electrodermal Activity Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 103. [Google Scholar] [CrossRef]
- Giannakos, M.N.; Sharma, K.; Papavlasopoulou, S.; Pappas, I.O.; Kostakos, V. Fitbit for learning: Towards capturing the learning experience using wearable sensing. Int. J. Hum. Comput. Stud. 2020, 136, 102384. [Google Scholar] [CrossRef]
- Paas, F.; Sweller, J. Implications of Cognitive Load Theory for Multimedia Learning. In The Cambridge Handbook of Multimedia Learning; Cambridge University Press (CUP): New York, NY, USA, 2014; pp. 27–42. [Google Scholar]
- Sweller, J.; Ayers, P.; Kalyuga, S. Cognitive Load Theory; Springer: New York, NY, USA, 2011; pp. 37–76. [Google Scholar]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Comprehension of Graphics; Elsevier BV: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2014, 58, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sweller, J. Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educ. Psychol. Rev. 2010, 22, 123–138. [Google Scholar] [CrossRef]
- Brünken, R.; Plass, J.; Leutner, D. Direct Measurement of Cognitive Load in Multimedia Learning. Educ. Psychol. 2003, 38, 53–61. [Google Scholar] [CrossRef]
- Park, B.; Brünken, R. The rhythm method: A new method for measuring cognitive load—An experimental dual-task study. Appl. Cogn. Psychol. 2015, 29, 232–243. [Google Scholar]
- Antonenko, P.; Paas, F.; Grabner, R.; Van Gog, T. Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 2010, 22, 425–438. [Google Scholar] [CrossRef]
- Cook, A.E.; Wei, W.; Preziosi, M.A. The Use of Ocular-Motor Measures in a Convergent Approach to Studying Cognitive Load. In Cognitive Load Measurement and Application: A Theoretical Framework for Meaningful Research and Practice; Routledge: New York, NY, USA, 2017; pp. 112–128. [Google Scholar]
- Zagermann, J.; Pfeil, U.; Reiterer, H. Measuring Cognitive Load using Eye Tracking Technology in Visual Computing. In Proceedings of the Beyond Time and Errors on Novel Evaluation Methods for Visualization—BELIV ’16, Baltimore, MD, USA, 24 October 2016; pp. 78–85. [Google Scholar]
- Wiberg, H.; Nilsson, E.; Lindén, P.; Svanberg, B.; Poom, L. Physiological responses related to moderate mental load during car driving in field conditions. Boil. Psychol. 2015, 108, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Or CK, L.; Duffy, V.G. Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement. Occup. Ergon. 2007, 7, 83–94. [Google Scholar]
- Zhang, H.; Zhu, Y.; Maniyeri, J.; Guan, C. Detection of variations in cognitive workload using multi-modality physiological sensors and a large margin unbiased regression machine. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2985–2988. [Google Scholar]
- Haapalainen, E.; Kim, S.; Forlizzi, J.F.; Dey, A.K. Psycho-physiological measures for assessing cognitive load. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing (ACM), New York, NY, USA, 12–16 September 2010. [Google Scholar]
- Charles, R.; Nixon, J. Measuring mental workload using physiological measures: A systematic review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef] [PubMed]
- De Waard, D. The Measurement of Drivers’ Mental Workload; Groningen University, Traffic Research Center: Haren, The Netherlands, 1996. [Google Scholar]
- Kramer, A.F. Physiological metrics of mental workload: A review of recent progress. In Multiple Task Performance; Taylor & Francis: London, UK, 1991; pp. 279–328. [Google Scholar]
- Larmuseau, C.; Vanneste, P.; Cornelis, J.; Desmet, P.; Depaepe, F. Combining physiological data and subjective measurements to investigate cognitive load during complex learning. Front. Learn. Res. 2019, 7, 57–74. [Google Scholar] [CrossRef]
- Real-time Physiological Signals. E4 EDA/GSR Sensor. Empatica. Available online: https://www.empatica.com/en-eu/research/e4/ (accessed on 6 November 2019).
- Boucsein, W. Electrodermal Activity; Plenum: New York, NY, USA, 1992. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer Science and Business Media LLC: New York, NY, USA, 2013; Volume 103. [Google Scholar]
- Gibbons, R.D.; Hedeker, D. Application of random-effects probit regression models. J. Consult. Clin. Psychol. 1994, 62, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.S.; Broughton, R.J. Rapid Decline in Body Temperature Before Sleep: Fluffing the Physiological Pillow? Chrono Int. 1994, 11, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.G.; Winograd, P. How metacognition can promote academic learning and instruction. Dimens. Think. Cogn. Instr. 1990, 1, 15–51. [Google Scholar]
Cognition State | Cognitive Load | Associated Task |
---|---|---|
Deep Cognition | High | Playing Sudoku |
Leisured Cognition | Moderate | Browsing the Internet |
Daydreaming | Low | Sitting and Doing Nothing |
EDA (μS) | HR (Beats/Minute) | TEMP (°C) | ||||||
---|---|---|---|---|---|---|---|---|
Person | Activity | N | Mean | SD | Mean | SD | Mean | SD |
1 | Sudoku | 1198 | 0.06 | 0.03 | 72.61 | 10.70 | 32.32 | 1.67 |
Browsing Internet | 1273 | 0.04 | 0.02 | 81.37 | 18.26 | 31.96 | 1.92 | |
Daydreaming | 1359 | 0.05 | 0.01 | 68.55 | 7.68 | 31.16 | 1.53 | |
2 | Sudoku | 9813 | 4.07 | 3.03 | 92.08 | 10.33 | 32.53 | 0.43 |
Browsing Internet | 9074 | 3.27 | 2.19 | 92.24 | 12.32 | 32.52 | 0.38 | |
Daydreaming | 8860 | 2.81 | 2.68 | 88.74 | 12.90 | 32.55 | 0.33 | |
3 | Sudoku | 4260 | 0.17 | 0.03 | 78.69 | 7.62 | 30.92 | 1.64 |
Browsing Internet | 3900 | 0.19 | 0.05 | 73.42 | 8.55 | 30.92 | 1.58 | |
Daydreaming | 3229 | 0.19 | 0.08 | 73.50 | 8.15 | 31.56 | 0.60 | |
4 | Sudoku | 2296 | 0.10 | 0.09 | 84.98 | 6.70 | 33.52 | 1.65 |
Browsing Internet | 2562 | 0.14 | 0.08 | 80.96 | 3.87 | 32.54 | 0.99 | |
Daydreaming | 1735 | 0.09 | 0.01 | 89.97 | 3.85 | 34.49 | 0.78 | |
5 | Sudoku | 2227 | 0.16 | 0.11 | 82.92 | 14.37 | 30.05 | 1.30 |
Browsing Internet | 2169 | 0.11 | 0.06 | 74.94 | 8.83 | 33.01 | 0.62 | |
Daydreaming | 1804 | 0.05 | 0.04 | 71.89 | 11.35 | 31.93 | 2.53 | |
6 | Sudoku | 2880 | 0.13 | 0.06 | 70.02 | 7.77 | 32.59 | 2.38 |
Browsing Internet | 3600 | 0.14 | 0.05 | 68.92 | 8.64 | 32.70 | 1.94 | |
Daydreaming | 3420 | 0.14 | 0.08 | 74.29 | 7.60 | 32.06 | 2.61 | |
7 | Sudoku | 10200 | 0.38 | 0.23 | 75.17 | 5.32 | 32.93 | 0.71 |
Browsing Internet | 3840 | 0.39 | 0.25 | 80.10 | 16.35 | 32.65 | 0.42 | |
Daydreaming | 3540 | 0.43 | 0.44 | 73.85 | 6.25 | 32.31 | 0.89 |
Activity (Resting, Web, Sudoku) | Liberal (95% Training) | Conservative (10% Training) | ||||||
---|---|---|---|---|---|---|---|---|
Model | AUC | F1 | Precision | Recall | AUC | F1 | Precision | Recall |
Constant | 0.49 | 0.22 | 0.16 | 0.40 | 0.50 | 0.22 | 0.16 | 0.39 |
K-Nearest Neighbors (k = 3) | 0.97 | 0.93 | 0.93 | 0.93 | 0.89 | 0.84 | 0.84 | 0.84 |
Logistic Regression | 0.52 | 0.23 | 0.44 | 0.41 | 0.36 | 0.28 | 0.41 | 0.41 |
Naïve Bayes | 0.65 | 0.45 | 0.46 | 0.47 | 0.67 | 0.44 | 0.45 | 0.46 |
Decision Tree (depth = 4) | 0.68 | 0.43 | 0.57 | 0.49 | 0.67 | 0.45 | 0.53 | 0.48 |
Support Vector Machine | 0.50 | 0.31 | 0.33 | 0.32 | 0.44 | 0.28 | 0.31 | 0.29 |
Neural Network | 0.79 | 0.61 | 0.61 | 0.61 | 0.33 | 0.45 | 0.47 | 0.47 |
AdaBoost | 0.93 | 0.92 | 0.92 | 0.92 | 0.78 | 0.80 | 0.80 | 0.80 |
Random Forest | 0.99 | 0.94 | 0.94 | 0.94 | 0.93 | 0.85 | 0.85 | 0.85 |
EDA (μS) | HR (Beats/Minute) | TEMP (°C) | ||||||
---|---|---|---|---|---|---|---|---|
Person | Focused | N | Mean | SD | Mean | SD | Mean | SD |
1 | No | 60 | 0.19 | 0.04 | 98.18 | 15.36 | 31.84 | 0.08 |
Yes | 514 | 0.22 | 0.02 | 74.74 | 7.05 | 32.29 | 0.13 | |
2 | No | 0 | ||||||
Yes | 855 | 0.09 | 0.03 | 97.94 | 18.28 | 33.68 | 0.43 | |
3 | No | 117 | 0.07 | 0.01 | 80.29 | 4.37 | 30.85 | 0.06 |
Yes | 880 | 0.09 | 0.01 | 75.10 | 5.03 | 30.48 | 0.18 | |
4 | No | 176 | 0.04 | 0.02 | 89.62 | 16.05 | 29.16 | 0.21 |
Yes | 583 | 0.05 | 0.02 | 90.47 | 8.59 | 30.69 | 1.44 | |
5 | No | 0 | ||||||
Yes | 475 | 0.20 | 0.07 | 79.36 | 9.74 | 32.33 | 0.15 | |
6 | No | 293 | 0.38 | 0.08 | 71.40 | 10.63 | 33.53 | 0.35 |
Yes | 250 | 0.42 | 0.05 | 80.45 | 11.80 | 33.50 | 0.12 | |
7 | No | 653 | 0.11 | 0.03 | 96.29 | 19.11 | 33.80 | 0.27 |
Yes | 238 | 0.06 | 0.02 | 101.41 | 13.67 | 33.38 | 0.58 |
Variable | B | SE | χ2 (df = 1) | p-Value | OR |
---|---|---|---|---|---|
EDA | −1.424 | 0.114 | 157.288 | 0.000 | 0.241 |
TEMP | −0.954 | 0.098 | 94.613 | 0.000 | 0.385 |
HR | 0.332 | 0.111 | 8.941 | 0.003 | 1.394 |
Reported Focus (Yes/No) | Liberal (95% Training) | Conservative (10% Training) | ||||||
---|---|---|---|---|---|---|---|---|
Model | AUC | F1 | Precision | Recall | AUC | F1 | Precision | Recall |
Constant | 0.46 | 0.64 | 0.56 | 0.75 | 0.50 | 0.64 | 0.56 | 0.75 |
K-Nearest Neighbors (k = 3) | 0.87 | 0.80 | 0.80 | 0.80 | 0.81 | 0.79 | 0.79 | 0.79 |
Logistic Regression | 0.54 | 0.64 | 0.56 | 0.75 | 0.52 | 0.64 | 0.69 | 0.75 |
Naïve Bayes | 0.68 | 0.64 | 0.56 | 0.75 | 0.66 | 0.66 | 0.68 | 0.74 |
Decision Tree (depth = 4) | 0.73 | 0.75 | 0.81 | 0.80 | 0.71 | 0.74 | 0.74 | 0.77 |
Support Vector Machine | 0.51 | 0.61 | 0.61 | 0.61 | 0.53 | 0.64 | 0.62 | 0.67 |
Neural Network | 0.54 | 0.64 | 0.56 | 0.75 | 0.52 | 0.64 | 0.68 | 0.75 |
AdaBoost | 0.86 | 0.90 | 0.90 | 0.90 | 0.72 | 0.78 | 0.78 | 0.78 |
Random Forest | 0.96 | 0.90 | 0.90 | 0.91 | 0.85 | 0.81 | 0.81 | 0.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romine, W.L.; Schroeder, N.L.; Graft, J.; Yang, F.; Sadeghi, R.; Zabihimayvan, M.; Kadariya, D.; Banerjee, T. Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use. Sensors 2020, 20, 4833. https://doi.org/10.3390/s20174833
Romine WL, Schroeder NL, Graft J, Yang F, Sadeghi R, Zabihimayvan M, Kadariya D, Banerjee T. Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use. Sensors. 2020; 20(17):4833. https://doi.org/10.3390/s20174833
Chicago/Turabian StyleRomine, William L., Noah L. Schroeder, Josephine Graft, Fan Yang, Reza Sadeghi, Mahdieh Zabihimayvan, Dipesh Kadariya, and Tanvi Banerjee. 2020. "Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use" Sensors 20, no. 17: 4833. https://doi.org/10.3390/s20174833
APA StyleRomine, W. L., Schroeder, N. L., Graft, J., Yang, F., Sadeghi, R., Zabihimayvan, M., Kadariya, D., & Banerjee, T. (2020). Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use. Sensors, 20(17), 4833. https://doi.org/10.3390/s20174833