Sit-To-Stand Movement Evaluated Using an Inertial Measurement Unit Embedded in Smart Glasses—A Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Apparatus, Data Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Reproducibility Intra- and Inter-Session of the Glasses and the Optoelectronic System
3.2. Reliability Intra- and Inter-Session of the Glasses and the Optoelectronic System
3.3. Concurrent Validity of the Glasses against the Optoelectronic System
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bohannon, R.W. Daily Sit-to-Stands Performed by Adults: A Systematic Review. J. Phys. Ther. Sci. 2015, 27, 939–942. [Google Scholar] [CrossRef] [Green Version]
- Cerrito, A.; Bichsel, L.; Radlinger, L.; Schmid, S. Reliability and Validity of a Smartphone-Based Application for the Quantification of the Sit-to-Stand Movement in Healthy Seniors. Gait Posture 2015, 41, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Janssen, W.G.M.; Bussmann, J.B.J.; Horemans, H.L.D.; Stam, H.J. Analysis and Decomposition of Accelerometric Signals of Trunk and Thigh Obtained during the Sit-to-Stand Movement. Med. Biol. Eng. Comput. 2005, 43, 265–272. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Csuka, M.; McCarty, D.J. Simple Method for Measurement of Lower Extremity Muscle Strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Koufaki, P.; Mercer, T.H.; Naish, P.F. Effects of Exercise Training on Aerobic and Functional Capacity of End-Stage Renal Disease Patients. Clin. Physiol. Funct. Imaging 2002, 22, 115–124. [Google Scholar] [CrossRef]
- Zijlstra, A.; Mancini, M.; Lindemann, U.; Chiari, L.; Zijlstra, W. Sit-Stand and Stand-Sit Transitions in Older Adults and Patients with Parkinson’s Disease: Event Detection Based on Motion Sensors versus Force Plates. J. Neuroeng. Rehabil. 2012, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Millington, P.J.; Myklebust, B.M.; Shambes, G.M. Biomechanical Analysis of the Sit-to-Stand Motion in Elderly Persons. Arch. Phys. Med. Rehabil. 1992, 73, 609–617. [Google Scholar]
- Janssen, W.G.; Bussmann, H.B.; Stam, H.J. Determinants of the Sit-to-Stand Movement: A Review. Phys. Ther. 2002, 82, 866–879. [Google Scholar] [CrossRef]
- Kralj, A.; Jaeger, R.J.; Munih, M. Analysis of Standing up and Sitting down in Humans: Definitions and Normative Data Presentation. J. Biomech. 1990, 23, 1123–1138. [Google Scholar] [CrossRef]
- Pai, Y.-C.; Rogers, M.W. Speed Variation and Resultant Joint Torques during Sit-to-Stand. Arch. Phys. Med. Rehabil. 1991, 72, 881–885. [Google Scholar] [CrossRef]
- Chorin, F.; Cornu, C.; Beaune, B.; Frère, J.; Rahmani, A. Sit to Stand in Elderly Fallers vs Non-Fallers: New Insights from Force Platform and Electromyography Data. Aging Clin. Exp. Res. 2016, 28, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Regterschot, G.R.H.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Accuracy and Concurrent Validity of a Sensor-Based Analysis of Sit-to-Stand Movements in Older Adults. Gait Posture 2016, 45, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Hellmers, S.; Fudickar, S.; Lau, S.; Elgert, L.; Diekmann, R.; Bauer, J.; Hein, A. Measurement of the Chair Rise Performance of Older People Based on Force Plates and IMUs. Sensors 2019, 19, 1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, B.K.; Jain, H.; Vijay, V.; Yadav, S.K.; Mathur, A.; Hewson, D.J. A Comparison of Four Approaches to Evaluate the Sit-to-Stand Movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.B.; Gentile, A.M. Sit-to-Stand: Functional Relationship between Upper Body and Lower Limb Segments. Hum. Mov. Sci. 1994, 13, 817–840. [Google Scholar] [CrossRef]
- Pourahmadi, M.R.; Ebrahimi Takamjani, I.; Jaberzadeh, S.; Sarrafzadeh, J.; Sanjari, M.A.; Bagheri, R.; Jannati, E. Test-Retest Reliability of Sit-to-Stand and Stand-to-Sit Analysis in People with and without Chronic Non-Specific Low Back Pain. Musculoskelet. Sci. Pract. 2018, 35, 95–104. [Google Scholar] [CrossRef]
- Millor, N.; Lecumberri, P.; Gómez, M.; Martínez-Ramírez, A.; Izquierdo, M. An Evaluation of the 30-s Chair Stand Test in Older Adults: Frailty Detection Based on Kinematic Parameters from a Single Inertial Unit. J. Neuroeng. Rehabil. 2013, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, W.; Bisseling, R.W.; Schlumbohm, S.; Baldus, H. A Body-Fixed-Sensor-Based Analysis of Power during Sit-to-Stand Movements. Gait Posture 2010, 31, 272–278. [Google Scholar] [CrossRef]
- Regterschot, G.R.H.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Test–Retest Reliability of Sensor-Based Sit-to-Stand Measures in Young and Older Adults. Gait Posture 2014, 40, 220–224. [Google Scholar] [CrossRef]
- Giansanti, D.; Maccioni, G. Physiological Motion Monitoring: A Wearable Device and Adaptative Algorithm for Sit-to-Stand Timing Detection. Physiol. Meas. 2006, 27, 713–723. [Google Scholar] [CrossRef]
- Janssen, W.G.M.; Bussmann, J.B.J.; Horemans, H.L.D.; Stam, H.J. Validity of Accelerometry in Assessing the Duration of the Sit-to-Stand Movement. Med. Biol. Eng. Comput. 2008, 46, 879–887. [Google Scholar] [CrossRef]
- Regterschot, G.R.H.; Folkersma, M.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Sensitivity of Sensor-Based Sit-to-Stand Peak Power to the Effects of Training Leg Strength, Leg Power and Balance in Older Adults. Gait Posture 2014, 39, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-C.; Hsu, Y.-L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Lindemann, U.; Hock, A.; Stuber, M.; Keck, W.; Becker, C. Evaluation of a Fall Detector Based on Accelerometers: A Pilot Study. Med. Biol. Eng. Comput. 2005, 43, 548–551. [Google Scholar] [CrossRef]
- Ozdalga, E.; Ozdalga, A.; Ahuja, N. The Smartphone in Medicine: A Review of Current and Potential Use Among Physicians and Students. J. Med. Internet Res. 2012, 14, e128. [Google Scholar] [CrossRef]
- Ruiz-Cárdenas, J.D.; Rodríguez-Juan, J.J.; Smart, R.R.; Jakobi, J.M.; Jones, G.R. Validity and Reliability of an IPhone App to Assess Time, Velocity and Leg Power during a Sit-to-Stand Functional Performance Test. Gait Posture 2018, 59, 261–266. [Google Scholar] [CrossRef]
- Roldán Jiménez, C.; Bennett, P.; Ortiz García, A.; Cuesta Vargas, A.I. Fatigue Detection during Sit-To-Stand Test Based on Surface Electromyography and Acceleration: A Case Study. Sensors 2019, 19, 4202. [Google Scholar] [CrossRef] [Green Version]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Differences in Trunk Accelerometry Between Frail and Nonfrail Elderly Persons in Sit-to-Stand and Stand-to-Sit Transitions Based on a Mobile Inertial Sensor. JMIR Mhealth Uhealth 2013, 1, e21. [Google Scholar] [CrossRef] [Green Version]
- Orange, S.T.; Metcalfe, J.W.; Liefeith, A.; Jordan, A.R. Validity of Various Portable Devices to Measure Sit-to-Stand Velocity and Power in Older Adults. Gait Posture 2020, 76, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Ganea, R.; Paraschiv-Ionescu, A.; Büla, C.; Rochat, S.; Aminian, K. Multi-Parametric Evaluation of Sit-to-Stand and Stand-to-Sit Transitions in Elderly People. Med. Eng. Phys. 2011, 33, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Rabuffetti, M.; Scalera, G.; Ferrarin, M. Effects of Gait Strategy and Speed on Regularity of Locomotion Assessed in Healthy Subjects Using a Multi-Sensor Method. Sensors 2019, 19, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdemir, A. An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice. Sensors 2016, 16, 1161. [Google Scholar] [CrossRef] [PubMed]
- GlassesCrafter.com. Available online: http://www.glassescrafter.com/information/percentage-population-wears-glasses.html (accessed on 17 June 2020).
- Epsilon. Available online: https://www.epsilon.insee.fr/jspui/bitstream/1/23534/1/er881.pdf (accessed on 17 June 2020).
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Knutson, L.M.; Soderberg, G.L.; Ballantyne, B.T.; Clarke, W.R. A Study of Various Normalization Procedures for within Day Electromyographic Data. J. Electromyogr. Kinesiol. 1994, 4, 47–59. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Yamako, G.; Chosa, E.; Totoribe, K.; Fukao, Y.; Deng, G. Quantification of the Sit-to-Stand Movement for Monitoring Age-Related Motor Deterioration Using the Nintendo Wii Balance Board. PLoS ONE 2017, 12, e0188165. [Google Scholar] [CrossRef] [Green Version]
Mean Acceleration Value (Standard Error) in m·s−2 | Intraclass Correlation Coefficient (95% Confidence Interval) | Standard Error of the Measurement | Minimum Detectable Change | Coefficient of Variation (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Session 1 | Session 2 | Session 1 | Session 2 | Test-Retest | Session 1 | Session 2 | Test-Retest | Session 1 | Session 2 | Test-Retest | Session 1 | Session 2 | |
Glasses | |||||||||||||
VA | |||||||||||||
Comfort WCC | 14.65 (1.65) | 14.63 (1.19) | 0.88 (0.79–0.94) | 0.86 (0.76–0.93) | 0.87 (0.69–0.95) | 0.60 | 0.53 | 0.52 | 1.65 | 1.46 | 1.44 | 5.17 | 5.33 |
Comfort CC | 13.29 (1.70) | 13.49 (1.04) | 0.90 (0.82–0.95) | 0.78 (0.66–0.89) | 0.83 (0.61–0.93) | 0.59 | 0.61 | 0.60 | 1.63 | 1.70 | 1.66 | 6.12 | 5.79 |
Slow WCC | 13.13 (1.74) | 12.57 (1.72) | 0.89 (0.81–0.95) | 0.91 (0.85–0.96) | 0.75 (0.46–0.90) | 0.61 | 0.54 | 0.87 | 1.68 | 1.49 | 2.41 | 4.71 | 4.63 |
Slow CC | 11.94 (1.68) | 11.71 (1.35) | 0.91 (0.84–0.96) | 0.90 (0.83–0.95) | 0.63 (0.25–0.84) | 0.53 | 0.46 | 0.92 | 1.47 | 1.27 | 2.56 | 4.84 | 4.65 |
APA | |||||||||||||
Comfort WCC | 2.50 (0.99) | 2.65 (0.94) | 0.72 (0.58–0.85) | 0.70 (0.55–0.84) | 0.45 (0.01–0.74) | 0.47 | 0.55 | 0.73 | 1.24 | 1.51 | 2.01 | 37.61 | 53.32 |
Comfort CC | 1.76 (0.85) | 2.12 (1.21) | 0.79 (0.66–0.89) | 0.88 (0.79–0.94) | 0.51 (0.08–0.78) | 0.36 | 0.75 | 0.76 | 1.01 | 2.08 | 2.11 | 59.84 | 33.06 |
Slow WCC | 2.01 (0.99) | 1.80 (1.19) | 0.80 (0.69–0.90) | 0.82 (0.71–0.91) | 0.60 (0.21–0.82) | 0.42 | 0.42 | 0.70 | 1.17 | 1.16 | 1.93 | 53.45 | 56.88 |
Slow CC | 1.24 (1.12) | 1.20 (1.28) | 0.78 (0.66–0.89) | 0.89 (0.81–0.95) | 0.67 (0.32–0.86) | 0.40 | 0.48 | 0.70 | 1.11 | 1.32 | 1.94 | 33.32 | 64.35 |
OptiTrack | |||||||||||||
VA | |||||||||||||
Comfort WCC | 4.85 (1.46) | 4.95 (1.04) | 0.90 (0.83–0.95) | 0.84 (0.74–0.92) | 0.92 (0.81–0.97) | 0.50 | 0.47 | 0.36 | 1.38 | 1.30 | 1.00 | 13.77 | 11.99 |
Comfort CC | 4.95 (1.64) | 5.31 (1.42) | 0.92 (0.86–0.96) | 0.87 (0.79–0.94) | 0.72 (0.40–0.88) | 0.49 | 0.59 | 0.81 | 1.37 | 1.55 | 2.26 | 18.53 | 17.67 |
Slow WCC | 3.27 (1.34) | 2.74 (1.47) | 0.87 (0.78–0.94) | 0.94 (0.89–0.97) | 0.72 (0.40–0.88) | 0.51 | 0.37 | 0.76 | 1.42 | 1.03 | 2.10 | 19.31 | 19.18 |
Slow CC | 3.14 (1.31) | 2.88 (1.61) | 0.84 (0.74–0.92) | 0.92 (0.86–0.96) | 0.59 (0.21–0.82) | 0.57 | 0.47 | 0.93 | 1.57 | 1.31 | 2.57 | 19.11 | 21.91 |
APA | |||||||||||||
Comfort WCC | 2.77 (0.80) | 2.93 (0.77) | 0.79 (0.68–0.90) | 0.80 (0.68–0.90) | 0.94 (0.85–0.98) | 0.43 | 0.41 | 0.20 | 1.18 | 1.14 | 0.55 | 17.67 | 16.26 |
Comfort CC | 2.85 (0.68) | 3.01 (0.61) | 0.79 (0.66–0.89) | 0.78 (0.66–0.89) | 0.70 (0.37–0.87) | 0.38 | 0.38 | 0.37 | 1.05 | 1.04 | 1.02 | 17.88 | 18.05 |
Slow WCC | 1.93 (0.75) | 1.73 (0.76) | 0.83 (0.73–0.92) | 0.90 (0.82–0.95) | 0.74 (0.45–0.89) | 0.36 | 0.27 | 0.39 | 0.99 | 0.74 | 1.09 | 23.54 | 22.72 |
Slow CC | 1.93 (0.78) | 1.79 (0.78) | 0.82 (0.71–0.92) | 0.82 (0.71–0.91) | 0.86 (0.68–0.95) | 0.36 | 0.36 | 0.30 | 1.01 | 1.01 | 0.82 | 21.55 | 24.14 |
Pearson Correlation (r) | Bland-Altman | |||||
---|---|---|---|---|---|---|
Session 1 | Session 2 | Global | Bias (Mean Difference) | Lower Limit | Upper Limit | |
VA | ||||||
Comfort WCC | 0.78 *** | 0.60 *** | 0.72 *** | −9.73 | −12.10 | −7.35 |
Comfort CC | 0.62 *** | 0.37 *** | 0.52 *** | −8.29 | −11.30 | −5.29 |
Slow WCC | 0.94 *** | 0.94 *** | 0.94 *** | −9.84 | −11.12 | −8.56 |
Slow CC | 0.76 *** | 0.80 *** | 0.76 *** | −8.84 | −10.89 | −6.79 |
APA | ||||||
Comfort WCC | 0.41 *** | 0.36 *** | 0.38 *** | 0.28 | −2.33 | 2.88 |
Comfort CC | 0.43 *** | 0.61 *** | 0.53 *** | 0.97 | −1.24 | 3.18 |
Slow WCC | 0.42 *** | 0.48 *** | 0.46 *** | −0.07 | −2.46 | 2.31 |
Slow CC | 0.54 *** | 0.43 *** | 0.48 *** | 0.64 | −1.84 | 3.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellec, J.; Chorin, F.; Castagnetti, A.; Colson, S.S. Sit-To-Stand Movement Evaluated Using an Inertial Measurement Unit Embedded in Smart Glasses—A Validation Study. Sensors 2020, 20, 5019. https://doi.org/10.3390/s20185019
Hellec J, Chorin F, Castagnetti A, Colson SS. Sit-To-Stand Movement Evaluated Using an Inertial Measurement Unit Embedded in Smart Glasses—A Validation Study. Sensors. 2020; 20(18):5019. https://doi.org/10.3390/s20185019
Chicago/Turabian StyleHellec, Justine, Frédéric Chorin, Andrea Castagnetti, and Serge S. Colson. 2020. "Sit-To-Stand Movement Evaluated Using an Inertial Measurement Unit Embedded in Smart Glasses—A Validation Study" Sensors 20, no. 18: 5019. https://doi.org/10.3390/s20185019
APA StyleHellec, J., Chorin, F., Castagnetti, A., & Colson, S. S. (2020). Sit-To-Stand Movement Evaluated Using an Inertial Measurement Unit Embedded in Smart Glasses—A Validation Study. Sensors, 20(18), 5019. https://doi.org/10.3390/s20185019