Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies
Abstract
:1. Introduction
1.1. Unmanned Aerial Vehicle
1.2. Optical Wireless Communication Technology
1.3. Contributing to This Article
2. Unmanned Aerial Vehicle (UAV)-Satellite Optical Wireless Communications
2.1. Link Modeling and Characteristic Analysis
2.2. High Altitude Platform Unmanned System
3. Unmanned Aerial Vehicles (UAVs) Optical Wireless Communications
3.1. Channel Modeling and Parameter Optimization
3.2. Link Performance Enhancement Technology
3.3. Module Design and Experiment Test
4. Unmanned Aerial Vehicles (UAV) Ground Terminal Optical Wireless Communications
4.1. UAV Connected to a Fixeble-Position Terminal
4.2. UAV Connected to a Variable-Position Terminal
4.3. UAV Wireless Light Energy Acquisition
4.4. Experimental Prototypes and Testing Activities
5. Unmanned Aerial Vehicles (UAV)-Sea Surface Optical Wireless Communications
5.1. Trajectory Optimization and Performance Analysis
5.2. Hybrid Link Analysis
6. Comparative Analysis and Trend Outlook
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | 2 Dimensional |
3D | 3 Dimensional |
5G | Fifth generation |
6G | Sixth generation |
A2A | Air-to-air |
A2G | Air-to-ground |
A2S | Air-to-satellite |
AR | Augmented reality |
ACO-OFDM | Asymmetrically clipped optical orthogonal frequency division multiplexing |
ATP | Acquisition, tracking, and pointing |
AOA | Angle-of-arrival |
BER | Bit error rate |
BPSK | Binary phase shift keying |
CCD | Charge coupled device |
CDMA | Code division multiple access |
CSI | Channel state information |
DC | Direct current |
DT/DD | Dual threshold/direct detection |
DC-OFDM | Direct current orthogonal frequency division multiplexing |
FSO | Free space optical |
FOV | Field of view |
HAP | High-altitude platform |
IM | Intensity modulation |
IOWC | Indoor optical wireless communication |
LAP | Low-altitude platform |
LiFi | Light fidelity |
LED | Light-emitting diode |
LOS | Line of sight |
MIMO | Multi-input and multi-output |
MZM | Mach–Zehnder modulation |
mm Wave | Millimeter-wave |
OAM | Orbital angular momentum |
OES | Onboard embedded system |
OFDM | Orthogonal frequency division multiplexing |
OMU | Optical multipoint unit |
OWC | Optical wireless communication |
OCC | Optical camera communication |
OOK | On/off keying |
PV | Photovoltaic |
PPM | Pulse position modulation |
QKD | Quantum key distribution |
QAM-4 | Pulse amplitude modulation-4 |
QAM | Quadrature amplitude modulation |
QPSK | Quadrature phase shift keying |
QR | Quick response |
RF | Radio frequency |
RSU | Roadside units |
SNR | Sight-of-noise ratio |
UAV | Unmanned aerial vehicle |
VLC | Visible light communication |
WDM | Wavelength division multiplexing |
References
- Tariq, F.; Khandaker, M.R.A.; Wong, K.-K.; Imran, M.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 10, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Menouar, H.; Güvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag. 2017, 10, 22–28. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [Google Scholar] [CrossRef] [Green Version]
- Zeping, Z.; Zhike, Z.; Jun, T. 200 Gb/s FSO WDM communication system empowered by multi-wavelength directly modulated TOSA for 5G wireless networks. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar]
- Huang, X.; Zhang, J.; Liu, R.; Guo, Y.J.; Hanzo, L. Airplane-aided integrated networking for 6G wireless: Will it work? IEEE Veh. Technol. Mag. 2019, 14, 84–91. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, M.; Guo, C. Power efficient visible light communication (VLC) with unmanned aerial vehicles. IEEE Commun. Lett. 2019, 23, 1272–1275. [Google Scholar] [CrossRef] [Green Version]
- Yanjie, D.; Zoheb, H.M.; Julian, C. An edge computing empowered radio access network with UAV-mounted FSO fronthaul and backhaul: Key challenges and approaches. IEEE Wirel. Commun. 2018, 25, 154–160. [Google Scholar]
- Alzenad, M.; Shakir, M.Z.; Yanikomeroglu, H.; Alouini, M.-S. FSO-Based Vertical Backhaul/Fronthaul Framework for 5G+ Wireless Networks. IEEE Commun. Mag. 2018, 10, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Y.; Yu, H.-Y.; Zhang, J.-K.; Zhu, Y.-J.; Wang, J.-L.; Wang, T. Space codes for MIMO optical wireless communications: Error performance criterion and code construction. IEEE Trans. Wirel. Commun. 2017, 16, 3072–3085. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, R.; Hanzo, L. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Trans. Commun. 2015, 63, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Hanzo, L.; Haas, H.; Imre, S. Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless. Proc. IEEE 2012, 100, 1853–1888. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M. A comparative survey of optical wireless technologies: Architectures and applications. IEEE Access 2018, 6, 9819–9840. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Hossan, M.T.; Jang, Y.M. Optical Wireless Hybrid Networks: Trends, Opportunities, Challenges, and Research Directions. IEEE Commun. Surv. Tutor. 2020, 22, 930–966. [Google Scholar] [CrossRef]
- C˘ailean, A.-M.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y. What is LiFi? J. Lightwave Technol. 2015, 34, 1533–1544. [Google Scholar] [CrossRef]
- Ding, J.; Xu, Z. Indoor Optical Wireless Channel Characteristics with Distinct Source Radiation Patterns. IEEE Photonics J. 2016, 8, 1–15. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, C. Evaluation of Outdoor Visible Light Communications Links Using Actual LED Street Luminaries. In Proceedings of the 13th Chinese Conference, CCBR 2018, Urumqi, China, 11–12 August 2018. [Google Scholar]
- Lee, S.-J.; Kim, S.-P.; Kim, T.-S.; Kim, H.-K.; Lee, H.-C. C. Development of Autonomous Flight Control System for 50m Unmanned Airship. In Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, Melbourne, VIC, Australia, 14–17 December 2004. [Google Scholar]
- Nugroho, M.A.A.; Sepri, A.Y.; Benyamin, R.S.B.; Trilaksono, B.R.; Moelyadi, A. Design and Implementation of Attitude Stabilization on Ganefly Wings Micro Aerial Vehicle using Paparazzi. In Proceedings of the 2017 7th IEEE International Conference on System Engineering and Technology (ICSET 2017), Shah Alam, Malaysia, 2–3 October 2017. [Google Scholar]
- Chen, P.-L.; Chang, S.-T.; Ji, S.-T.; Lin, S.-C.; Lin, H.-H.; Tsay, H.-L.; Huang, P.-H.; Chiang, W.-C.; Lin, W.-C.; Lee, S.-L.; et al. Demonstration of 16 Channels 10 Gb/s WDM Free Space Transmission Over 2.16 km. In Proceedings of the 2008 Digest of the IEEE/LEOS Summer Topical Meetings, Acapulco, Mexico, 21–23 July 2008. [Google Scholar]
- Najafi, M.; Ajam, H.; Jamali, V.; Diamantoulakis, P.D.; Karagiannidis, G.K. Statistical Modeling of the FSO Fronthaul Channel for UAV-Based Communications. IEEE Trans. Commun. 2020, 68, 3720–3736. [Google Scholar] [CrossRef] [Green Version]
- Tadayyoni, H.; Uysal, M. Ultraviolet Communications for Ground-to-Air Links. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019. [Google Scholar]
- An, J.; He, X.; Yang, Q.; Xu, L.; Liu, X. Application research of small Unmanned aerial vehicle (UAV) airfield wireless Laser communication. Opt. Eng. 2017, 53, 10–13. [Google Scholar]
- Cruz, P.J.; Fierro, R. Towards optical wireless communications between micro unmanned aerial and ground systems. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015. [Google Scholar]
- Figueiredo, M.; Ribeiro, C.; Alves, L.N. Live demonstration: 250 Mbps DCO-OFDM VLC. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; p. 457. [Google Scholar]
- Mohammad, T.D.; Seyed, M.S.; Imran, S.A. Tractable Optical Channel Modeling Between UAVs. IEEE Trans. Veh. Technol. 2019, 68, 11543–11550. [Google Scholar]
- Ramdhan, N.; Sliti, M.; Boudriga, N. Codeword-based data collection protocol for optical Unmanned Aerial Vehicle networks. In Proceedings of the IEEE 2016 HONET-ICT, Nicosia, Cyprus, 13–14 October 2016; pp. 35–39. [Google Scholar]
- Li, L.; Zhang, R.; Liao, P.; Cao, Y.; Song, H.; Zhao, Y.; Du, J.; Zhao, Z.; Liu, C.; Pang, K.; et al. MIMO equalization to mitigate turbulence in a 2-Channel 40-Gbit/s QPSK free-space optical 100-m round-trip orbital-angular-momentum-multiplexed link between a ground station and a retro-reflecting UAV. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Tan, J.; Zhao, Z.; Wang, Y. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module. Opt. Express 2018, 26, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, F.M. 10.72 Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Djengomemgoto, G.; Narmanlioglu, O.; Kizilirmak, R.C. eU-OFDM based multiple access for visible light communication networks. In Proceedings of the 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 12–14 October 2016; pp. 1–4. [Google Scholar]
- Mulinde, R.; Nguyen, K.D.; Cowley, W.G. BER analysis of optical eU-OFDM transmission over AWGN. In Proceedings of the 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, QLD, Australia, 14–16 December 2015; pp. 1–6. [Google Scholar]
- Wang, X.D.; Bao, T.; Wu, N. A novel Hartle-based U-OFDM dimming control approach. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017. [Google Scholar]
- Narmanlioglu, O.; Uysal, M. DCT-OFDM based visible light communications. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; pp. 521–524. [Google Scholar]
- Wu, N.; Bar-Ness, Y. Lower bounds on the channel capacity of ASCO-OFDM and ADC-OFDM. In Proceedings of the 2015 49th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 14–16 March 2015; pp. 1–5. [Google Scholar]
- Wu, D.; Sun, X.; Ansari, N. An FSO-based Drone assisted mobile access network for emergency communications. IEEE Trans. Netw. Sci. Eng. 2020, 7, 1597–1606. [Google Scholar] [CrossRef]
- Dautov, K.; Kalikulov, N.; Kizilirmak, R.C. The impact of various weather conditions on vertical FSO links. In Proceedings of the 2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT), Moscow, Russia, 20–22 September 2017. [Google Scholar]
- Song, X.; Wang, M.; Xing, S. Progress of orthogonal frequency division multiplexing based on visible light communication. Laser Optoelectron. Prog. 2018, 55, 120008. [Google Scholar] [CrossRef]
- Leitgeb, E.; Zettl, K.; Muhammad, S.S.; Schmitt, N.; Rehm, W. Investigation in Free Space Optical Communication Links Between Unmanned Aerial Vehicles (UAVs). In Proceedings of the 2007 9th International Conference on Transparent Optical Networks, Rome, Italy, 1–5 July 2007. [Google Scholar]
- Yokota, N.; Yasaka, H.; Sugiyasu, K. Motion tolerance for dynamic object recognition using visible light IDs. In Proceedings of the IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9–12 October 2018; pp. 702–703. [Google Scholar]
- Amantayeva, A.; Yerzhanova, M.; Kizilirmak, R. UAV location optimization for UAV-to-vehicle multiple access channel with visible light Communication. In Proceedings of the 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Ukida, H.; Miwa, M.; Tanimoto, Y. Visual UAV control system using LED panel and on-board camera. In Proceedings of the IEEE Instrumentation & Measurement Technology Conference, Minneapolis, MN, USA, 6–9 May 2013; pp. 1386–1391. [Google Scholar]
- Fidler, F.; Knapek, M.; Horwath, J.; Leeb, W.R. Optical Communications for High-Altitude Platforms. J. Sel. Top. Quantum Electron. 2010, 16, 1058–1070. [Google Scholar] [CrossRef]
- Perlot, N.; Duca, E.; Horwath, J. System requirements for optical HAP-satellite links. In Proceedings of the International Symposium on Communication Systems, Graz, Austria, 25 July 2008. [Google Scholar]
- Li, M.; Hong, Y.; Zeng, C. Investigation on the UAV-to-satellite optical communication systems. J. Sel. Areas Commun. 2018, 36, 2128–2138. [Google Scholar] [CrossRef]
- Fidler, F. Optical Backhaul Links between HAPs and Satellites in the Multi-Gigabit Regime. In Proceedings of the GLOBECOM Workshops, New Orleans, LA, USA, 30 November–4 December 2008. [Google Scholar]
- Mohammed, A.; Mehmood, A.; Pavlidou, F.-N.; Mohorcic, M. The Role of High-Altitude Platforms (HAPs) in the Global Wireless Connectivity. Proc. IEEE 2011, 99, 1939–1953. [Google Scholar] [CrossRef]
- Antonini, M.; Betti, S.; Carrozzo, V.; Duca, E.; Ruggieri, M. Feasibility analysis of a HAP-LEO optical link for data relay purposes. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; pp. 1–8. [Google Scholar]
- Mohorcic, M.; Fortuna, C.; Vilhar, A. Evaluation of Wavelength Requirements for Stratospheric Optical Transport Networks. J. Commun. 2009, 4, 588–596. [Google Scholar] [CrossRef]
- Kandeepan, S.; Gomez, K.; Reynaud, L.; Rasheed, T. Aerial-terrestrial communications: Terrestrial cooperation and energy-efficient transmissions to aerial base stations. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2715–2735. [Google Scholar] [CrossRef] [Green Version]
- Karapantazis, S.; Pavlidou, F.N. Broadband communications via high altitude platforms (HAPs)-A survey. IEEE Commun. Surv. 2005, 7, 2–31. [Google Scholar] [CrossRef]
- Djuknic, G.M.; Freidenfelds, J.; Okunev, Y. Establishing wireless communications services via high-altitude aeronautical platforms: A concept whose time has come? IEEE Commun. Mag. 1997, 35, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Araniti, G.; Iera, A.; Molinaro, A. The role of HAPs in supporting multimedia broadcast and multicast services in terrestrial-satellite integrated systems. Wirel. Pers. Commun. 2005, 32, 195–213. [Google Scholar] [CrossRef]
- Korçaka, Ö.; Alagözb, F. Efficient integration of HAPs and mobile satellites via free-space optical links. Computer Netw. 2011, 55, 2942–2953. [Google Scholar] [CrossRef]
- Chlestil, C.; Leitgeb, E.; Schmitt, N.P. Reliable optical wireless links within UAV swarms. In Proceedings of the IEEE International Conference on Transparent Optical Networks, Nottingham, UK, 18–22 June 2006; pp. 39–42. [Google Scholar]
- Trinh, P.V.; Pham, A.T.; Carrasco-Casado, A.; Toyoshima, M. Quantum Key Distribution over FSO: Current Development and Future Perspectives. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018. [Google Scholar]
- Bourgoin, J.-P.; Higgins, B.L.; Gigov, N.; Holloway, C.; Pugh, C.J.; Kaiser, S.; Cranmer, M.; Jennewein, T. Free-space quantum key distribution to a moving receiver. Opt. Express. 2015, 23, 33437–33447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, M.Q.; Dang, N.T.; Pham, A.T. HAP-Aided Relaying Satellite FSO/QKD Systems for Secure Vehicular Networks. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019. [Google Scholar]
- Kaadan, A.; Refai, H.H.; Lopresti, P.G. Multi-element FSO transceivers alignment for Inter-UAV communications. J. Lightwave Technol. 2014, 32, 4785–4795. [Google Scholar] [CrossRef]
- Dautov, K.; Arzykulov, S.; Nauryzbayev, G. On the performance of UAV-enabled multihop V2V FSO systems over generalized α-μ channels. In Proceedings of the 2018 International Conference on Computing and Network Communications (CoCoNet), Astana, Kazakhstan, 15–17 August 2018; pp. 69–73. [Google Scholar]
- Kaadan, A.; Refai, H.H.; LoPresti, P.G. On the Development of Modular Optical Wireless Elements (MOWE). In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [Google Scholar]
- Kaad, A.; Zhou, D.; Refai, H.H. Modeling of aerial-to-aerial short-distance free-space optical links. In Proceedings of the Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 22–25 April 2013. [Google Scholar]
- Ramdhan, N.; Sliti, M.; Boudriga, N. A tree-based data collection protocol for optical unmanned aerial vehicle networks. Comput. Electr. Eng. 2018, 66, 80–97. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Su, W.; Ha, T. Background Radiation Effect on Ground Sensor-to-UAV Free-Space Optical Link with Inexpensive Laser. In Proceedings of the 2017 31st International Conference on Advanced Information Networking and Applications Workshops, Taipei, Taiwan, 27–29 March 2017; pp. 42–43. [Google Scholar]
- Dabiri, M.T.; Savojbolaghchi, H.; Sadough, S.M.S. On the Ergodic Capacity of Ground-to-UAV Free-Space Optical Communications. In Proceedings of the 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC2019), Tehran, Iran, 27–28 April 2019; pp. 176–179. [Google Scholar]
- Dabiri, M.T.; Sadough, S.M.S. Modeling and Parameter Optimization for Hovering UAV-Based Free-Space Optical Links. J. Sel. Areas Commun. 2018, 36, 2104–2113. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, M.T.; Sadough, S.M.S. Performance analysis of EM-based blind detection for ON–OFF keying modulation over atmospheric optical channels. Opt. Commun. 2018, 413, 299–303. [Google Scholar] [CrossRef]
- Kaadan, A.; Refai, H.; Lopresti, P. Spherical FSO receivers for UAV communication: Geometric coverage models. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2157–2167. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, M.; Chen, B. Optical OFDM aided enhanced 3-D visible light communication systems. In Proceedings of the IEEE/CIC, China (ICCC), Shenzhen, China, 2–4 November 2015; pp. 1–6. [Google Scholar]
- Mossaad, M.S.A.; Hranilovic, S.; Lampe, L. Visible light communications using OFDM and multiple LEDs. IEEE Trans.Commun. 2015, 63, 4304–4313. [Google Scholar] [CrossRef]
- Sanchez, C.; Paul, S.; Sebald, J. Low power antenna design for free space optical communications inside the ariane 5 VEB. In Proceedings of the IEEE International Conference on Wireless for Space and Extreme Environments (WISEE), Ottawa, ON, Canada, 16–18 October 2019. [Google Scholar]
- Jia, K.; Zhang, S. Influence of multiuser interference on performances of direct-current-biased optical orthogonal frequency division multiplexing code division multiple access system for visible light communication. Laser Optoelectron. Prog. 2019, 56, 110604. [Google Scholar]
- Mathias, L.C.; de Melo, L.F.; Abrao, T. 3-D Localization with Multiple LEDs Lamps in OFDM-VLC System. IEEE Access. 2019, 7, 6249–6261. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhao, S.H. Research on the performance of UAV aerial OFDM optical communication link. Semicond. Optoelectron. 2018, 39, 853–862. [Google Scholar]
- Hill, A.D.; Chapman, J.; Herndon, K.; Chopp, C.; Gauthier, D.J.; Kwiat, P. Drone-based Quantum Key Distribution. Urbana 2017, 51, 61801–63003. [Google Scholar]
- Zhu, L.; Yan, X.; Zhu, Y. High altitude platform-based two-hop relaying emergency communications schemes. In Proceedings of the 5th International Conference on Wirel. Commun., Netw. and Mobile Computing (WiCom ’09), Beijing, China, 24–26 September 2009; pp. 1–4. [Google Scholar]
- Ooia, Y.K.; Ugrasb, C.; Liua, C.; Hartensveldb, M.; Gandhic, S.; Cormierc, D.; Zhang, J. Integration of 3D printed lens with InGaN light-emitting diodes with enhanced light extraction efficiency. In Proceedings of the SPIE 2017, San Francisco, CA, USA; 2017; p. 10115. [Google Scholar]
- Narendran, N.; Perera, I.U.; Mou, X.; Thotagamuwa, D.R. Opportunities and challenges for 3-D printing of solid-state lighting systems. Proc. SPIE 2017, 10378, 1037802. [Google Scholar]
- Oh, J.; Choe, D.; Yun, C.; Hopmeier, M.; Kim, J. Towards the development and realization of an undetectable stealth UAV. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy; 2019; pp. 459–464. [Google Scholar]
- Yang, C. Using 3D Printing Technology to Develop the Unmanned Aerial Vehicle Electrooptical Pod for Free-space Optical Communication. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium Spring (PIERS), St. Petersburg, Russia, 2–25 May 2017; pp. 2972–2974. [Google Scholar]
- Lee, C. Wireless information and power transfer for communication recovery in disaster areas. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, Australia, 19 June 2014; pp. 1–4. [Google Scholar]
- Wu, D.; Ansari, N. High capacity spectrum allocation for multiple d2d users reusing downlink spectrum in lte. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Guo, X.; Nkrow, R.; Ansari, N.; Li, L.; Wang, L. Robust wifi localization by fusing derivative fingerprints of rss and multiple classifiers. IEEE Trans. Ind. Inform. 2020, 16, 3177–3186. [Google Scholar] [CrossRef]
- Narang, M.; Liu, W.; Gutierrez, J.; Chiaraviglio, L. A cyber physical buses-and-UAVs mobile edge infrastructure for large scale disaster emergency communications. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017; pp. 53–60. [Google Scholar]
- Sakano, T.; Kotabe, S.; Komukai, T.; Kumagai, T.; Shimizu, Y.; Takahara, A.; Ngo, T.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N. Bringing movable and deployable networks to disaster areas: Development and field test of mdru. IEEE Netw. 2016, 30, 86–91. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, W.; Bhargava, B. Hierarchical structure for supporting movable base stations in wireless networks. In Proceedings of the 10th International Conference on Telecommunications, Papeete, Tahiti, French Polynesia, French Polynesia, 23 February–1 March 2003; pp. 729–736. [Google Scholar]
- Wu, D.; Sun, X.; Ansari, N. A cooperative UAV assisted mobile access network for disaster emergency communications. In Proceedings of the 2019 IEEE Global Communications Conference, Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Li, P.; Miyazaki, T.; Wang, K.; Guo, S.; Zhuang, W. Vehicle-assist resilient information and network system for disaster management. IEEE Trans. Emerg. Top. Comput. 2017, 5, 438–448. [Google Scholar] [CrossRef]
- Arnon, S.; Kupferman, J. Effects of Weather on Drone to IoT QKD; Springer: Cham, Switzerland, 2019; Volume 11527, pp. 67–74. [Google Scholar]
- Bor-Yaliniz, I.; Yanikomeroglu, H. The new frontier in RAN heterogeneity: Multi-tier UAV-cells. IEEE Commun. Mag. 2016, 54, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, W.; Atallah, R.; Assi, C.; Khabbaz, M. Unmanned Aerial Vehicles as Store-Carry-Forward Nodes for Vehicular Networks. IEEE Access. 2017, 5, 23710–23718. [Google Scholar] [CrossRef]
- Azari, M.; Rosas, F.; Chen, K.; Pollin, S. Ultrareliable UAV Communication Using Altitude and Cooperation Diversity. IEEE Trans. Commun. 2018, 66, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-d placement of an aerial base station in next generation cellular networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2018, 15, 3949–3963. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Kim, G.-H.; Cho, Y.-Z.; Khan, A. Positioning of UAVs for Throughput Maximization in Software-Defined Disaster Area UAV Communication Networks. J. Commun. Netw. 2018, 20, 452–463. [Google Scholar] [CrossRef]
- Wu, L.; Hao, S.; Xie, X.; Li, G. Dynamic tracking and pointing accuracy measurement method of space laser communication system. J. Appl. Opt. 2017, 39, 762–766. [Google Scholar]
- Wu, C.W.; Peng, Q.; Huang, C.G. Thermal analysis on multijunction photovoltaic cell under oblique incident laser irradiation. Energy 2017, 134, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Fakids, J.; Vides, S.; Kucera, S. Indoor optical wireless power transfer to small cells at nighttime. J. Lightwave Technol. 2016, 34, 3236–3257. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Y.; Yong, A. Laser tracking and wireless power supply system for unmanned aerial vehicles. Laser Technol. 2017, 42, 306–310. [Google Scholar]
- Ho, T.-H. Pointing, Acquisition, and Tracking Systems for Free-Space Optical Communication Links. Ph.D. Thesis, The University of Maryland, College Park, MD, USA, 2007. [Google Scholar]
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M.; Zhang, T. A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications. IEEE Commun. Surv. Tutor. 2018, 20, 1104–1123. [Google Scholar] [CrossRef]
- Majumdar, A.K. Advanced Free Space Optics (FSO): A Systems Approach; Springer: New York, NY, USA, 2014; p. 186. [Google Scholar]
- Harris, A.; Sluss, J.J., Jr.; Refai, H.H.; LoPresti, P.G. Alignment and tracking of a free-space optical communications link to a UAV. In Proceedings of the 24th IEEE Digit. Avionics Syst. Conf. (DASC), Washington, DC, USA, 30 October–3 November 2005; pp. 1–9. [Google Scholar]
- Al-Akkoumi, M.K.; Refai, H.; Sluss, J.J., Jr. A tracking system for mobile FSO. In Proceedings of the Lasers and Applications in Science and Engineering, San Jose, CA, USA, 13 February 2008. [Google Scholar]
- Carrasco-Casado, A.; Vergaz, R.; Pena, J.M.S. Design and early development of a UAV terminal and a ground station for laser communications. In Proceedings of the SPIE Security+ Defence, Prague, Czech Republic, 9 September 2011. [Google Scholar]
- Carrasco-Casado, A. Low-impact air-to-ground free-space optical communication system design and first results. In Proceedings of the 2011 International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, CA, USA, 11–13 May 2011; pp. 109–112. [Google Scholar]
- Kingsbury, R.W.; Nguyen, T.; Riesing, K.; Cahoy, K. Fast-Steering Solutions for Cubesat-Scale Optical Communication; Society of Photo-optical Instrumentation Engineers: Bellingham, WA, USA, 2014. [Google Scholar]
- Nalbandian, R. Enhanced pointing gimbal mechanisms for next generation communication antennas. In Proceedings of the 15th European Space Mechanisms and Tribology Symposium, Noordwijk, The Netherlands, 25–27 September 2013; pp. 49–53. [Google Scholar]
- Guelman, M. Acquisition and pointing control for inter-satellite laser communications. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1239–1248. [Google Scholar] [CrossRef]
- Cap, G.A.; Refai, H.H.; Sluss, J.J., Jr. FSO tracking and auto-alignment transceiver system. In Proceedings of the 2008 IEEE/AIAA 27th Digital Avionics Systems Conference, St. Paul, MN, USA, 26–30 October 2008; pp. 1–12. [Google Scholar]
- Talmor, A.G.; Harding, H.; Chen, C.-C. Two-axis gimbal for stratospheric air-to-air and air-to-ground laser communication. In Free-Space Laser Communication and Atmospheric Propagation XXVIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar]
- Hiruta, M.; Nakagawa, M.; Haruyama, S.; Ishikawa, S. A study on optical wireless train communication system using mobile object tracking technique. In Proceedings of the 2009 11th International Conference on Advanced Communication Technology, Phoenix Park, Korea, 15–18 February 2009; pp. 35–40. [Google Scholar]
- Haruyama, S. New ground-to-train high-speed free-space optical communication system with fast handover mechanism. In Proceedings of the 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011; pp. 1–3. [Google Scholar]
- Urabe, H. High data rate ground-to-train free-space optical communication system. Opt. Eng. 2012, 51, 031204. [Google Scholar] [CrossRef]
- Nakamura, K. Development of broadband telecommunications system for railways using laser technology. Electr. Eng. 2015, 190, 45–56. [Google Scholar] [CrossRef]
- Mori, K. Fast handover mechanism for high data rate ground-to-train free-space optical communication system. In Proceedings of the Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 499–504. [Google Scholar]
- Bogushevskaya, V.A.; Zhalnin, B.V.; Zayats, O.V. An experimental investigation of the feasibility of using silicone and gallium arsenide solar batterie on space vehicles for receiving energy of laser infrared emission. Therm. Eng. 2012, 59, 975–980. [Google Scholar] [CrossRef]
- Becker, D.E.; Chiang, R.; Keys, C.C. Photovoltaic concentrator-based power beaming for space elevator application. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2010; p. 271. [Google Scholar]
- Looze, D.P. Structure of LQG controllers based on a hybrid adaptive optics system model. Eur. J. Control. 2011, 17, 237–247. [Google Scholar] [CrossRef]
- An, J.; He, X.; Yang, Q. Research on the application of the air to ground free space optical communication by small UAV. Opt. Commun. Technol. 2017, 41, 10–13. [Google Scholar]
- Khallaf, H.S.; Uysal, M. UAV-Based FSO Communications for High Speed Train Backhauling. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Lee, J.-H.; Park, K.-H.; Ko, Y.-C.; Alouin, M.-S. A UAV-Mounted Free Space Optical Communication: Trajectory Optimization for Flight Time. IEEE Trans. Wirel. Commun. 2020, 19, 1610–1621. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, K.-H.; Alouini, M.-S.; Ko, Y.-C. On the Throughput of Mixed FSO/RF UAV-Enabled Mobile Relaying Systems with a Buffer Constraint. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Gu, Z.; Zhang, J.; Ji, Y.; Bai, L.; Sun, X. Network Topology Reconfiguration for FSO-Based Fronthaul/Backhaul in 5G+Wireless Networks. IEEE Access. 2018, 6, 69426–69437. [Google Scholar] [CrossRef]
- Li, L. High-capacity free-space optical communications between a ground transmitter and a ground receiver via a UAV using multiplexing of multiple orbital-angular-momentum beams. Sci. Rep. 2017, 7, 17427. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.; Heo, Y.; Kang, H. Common-path optical terminals for Gbps full-duplex FSO communications between a ground and UAVs. In Applications of Lasers for Sensing and Free Space Communication; Optical Society of America: Washington, DC, USA, 2019; pp. 1–2. [Google Scholar]
- Chen, Y.; Feng, W.; Zheng, G. Optimum placement of UAV as relays. IEEE Commun. Lett. 2018, 22, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Wang, J.; Chen, Y.; Wang, X.; Ge, N.; Lu, J. UAV-aided MIMO communications for 5G internet of things. IEEE Intern. Things. J. 2019, 6, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zeng, Y.; Zhang, R. UAV-enabled radio access network: Multi-mode communication and trajectory design. IEEE Trans. Sign. Proc. 2018, 66, 5269–5284. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Zhang, R.; Lim, T.J. Throughput maximization for UAV enabled mobile relaying systems. IEEE Trans. Commun. 2016, 64, 4983–4996. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.H.; Kim, S.H.; Sung, D.K. Energy-efficient maneuvering and communication of a single UAV-based relay. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2320–2327. [Google Scholar] [CrossRef]
- Zhan, P.; Yu, K.; Swindlehurst, A.L. Wireless relay communications with unmanned aerial vehicles: Performance and optimization. IEEE Trans. Aero. Elec. Sys. 2011, 47, 2068–2085. [Google Scholar] [CrossRef]
- Jiang, F.; Swindlehurst, A.L. Optimization of UAV heading for the ground-to-air uplink. IEEE J. Sel. Areas Commun. 2012, 30, 993–1005. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Feng, W.; Chen, Y.; Wang, C.-X.; Ge, N. UAV-Enabled Accompanying Coverage for Hybrid Satellite-UAV-Terrestrial Maritime Communications. In Proceedings of the 28th Wireless and Optical Communication Conference (WOCC 2019), Beijing, China, 9–10 May 2019. [Google Scholar]
- Zheng, X.-T.; Guo, L.-X.; Cheng, M.-J.; Li, J.-T. Average BER of maritime visible light communication system in atmospheric turbulent channel. In Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, China, 21–24 July 2018. [Google Scholar]
- Matyszkiel, R.; Mikołajczyk, J.; Szabra, D.; Grochowina, B.; Bielecki, Z. Application of Optical/Radio Hybrid Communication in Marine Operation. In Proceedings of the 2019 Communication and Information Technologies (KIT), Vysoke Tatry, Slovakia, 9–11 October 2019. [Google Scholar]
- Ansari, I.S.; Yilmaz, F.; Alouini, M.-S. Impact of pointing errors on the performance of mixed RF/FSO dual-hop transmission systems. IEEE Wirel. Commun. Lett. 2013, 2, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Arienzo, L.; Tarchi, D. Stochastic optimization of cognitive networks. IEEE Trans. Green Commun. Netw. 2017, 1, 40–58. [Google Scholar] [CrossRef]
- Arienzo, L. Green RF/FSO Communications in Cognitive Relay-Based Space Information Networks for Maritime Surveillance. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1182–1193. [Google Scholar] [CrossRef]
- Kim, I.I.; Korevaar, E.J. Availability of free-space optics (FSO) and hybrid FSO/RF systems. In Optical Wireless Communications IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; pp. 1–12. [Google Scholar]
- Nadeem, F.; Kvicera, V.; Awan, M.S.; Leitgeb, E.; Muhammad, S.S.; Kandus, G. Weather effects on hybrid FSO/RF communication link. IEEE J. Sel. Areas Commun. 2009, 27, 1687–1697. [Google Scholar] [CrossRef]
- Torkildson, E.; Madhow, U.; Madhow, U. Indoor Millimeter Wave MIMO: Feasibility and Performance. IEEE Trans. Wirel. Commun. 2011, 10, 4150–4160. [Google Scholar] [CrossRef] [Green Version]
- Koonen, T. Indoor Optical Wireless Systems: Technology, Trends and Applications. J. Lightwave Technol. 2018, 36, 1459–1467. [Google Scholar] [CrossRef]
- Dat, P.T.; Kanno, A.; Inagaki, K.; Umezawa, T.; Yamamoto, N.; Kawanishi, T. Hybrid Optical Wireless–mmWave: Ultra High Speed Indoor Communications for Beyond 5G. In Proceedings of the 2019 IEEE INFOCOM Poster, Paris, France, 29 April–2 May 2019; pp. 1003–1004. [Google Scholar]
Author | Electric Field Modulation | Optical Field Modulation | Wavelength | Distance | Ref |
---|---|---|---|---|---|
X. J. Huang et al. | QAM and ACO-OFDM | MZM | - | 200 km | [6] |
Lajos Hanzo et al. | PPM and OFDM | IM | 940 nm | - | [14] |
P. L. Chen et al. | OOK | MZM | 1550 nm | 2.16 km | [21] |
Marzieh Najafi et al. | OOK | IM | 1550 nm | 500 m | [22] |
Dissanayake S D et al. | OOK | IM | 254 nm | 1000 m | [23] |
J. X. An et al. | OOK | IM | 1543 nm | 6.76 km | [24] |
Patricio J. et al. | OOK | IM | White light | 100 m | [25] |
Figueiredo M et al. | QAM and DCO-OFDM | IM | White light | - | [26] |
Mohammad T D et al. | OOK | IM | White light | 250 m | [27] |
Ramdhan N et al. | QPSK and CDMA | MZM | 1548 nm | 2ߝ4 km | [28] |
L. Li et al. | QPSK | IM | 1550 nm | 1 km | [29] |
Amantayeva A et al. | OOK | IM | - | 20 m | [37] |
D. Wu et al. | QAM and OFDM | IM | 1550 nm | 2 km | [38] |
UAV Type | Link Type | Distance | Channel | Wavelength | Data Rate | Work Type | Ref |
---|---|---|---|---|---|---|---|
Fixed-wing | A2S | ~36,000 km | LOS | 1550 nm | 1.8 Gb/s | Simulation | [46] |
HAP | A2S | 35,000 km | LOS | 1550 nm | 10.7 Gb/s | Simulation | [47] |
HAP | A2S | - | LOS | - | 10 Gb/s | Simulation | [48] |
HAP | A2S | 20 km | LOS | 1550 nm | 10 Gb/s | Simulation | [49] |
HAP | A2S | 517 km | LOS | 1550 nm | 2.5 Gb/s | Simulation | [50] |
Types | Ref |
---|---|
Gamma-gamma logarithmic distribution atmospheric turbulence model | [27,56,63,64,66,67] |
Directivity error and atmospheric turbulence compound fading model subject to Rayleigh distribution | [60,68] |
Discrete-time energy consumption and atmospheric turbulence compound fading model | [69] |
UAV Type | Link Type | Distance | Channel | Wavelength | Data Rate (Gb/s) | Work Type | Ref |
---|---|---|---|---|---|---|---|
Fixed-wing | A2G | 300 m | LOS | 750 nm | - | Simulation | [8] |
Fixed-wing | A2G | 1–20 km | LOS and NLOS | 1550 nm | Gb/s | Simulation | [9] |
- | A2G | 500 m | LOS | 1550 nm | Gb/s | Simulation | [22] |
Multi-rotor | A2G | 1000 m | LOS | 254 nm | 5 kb/s | Simulation | [23] |
Multi-rotor | A2G | 20 km | LOS | 1550 nm | 1.13 | Simulation | [25] |
Multi-rotor | A2G | 100 m | LOS | 1550 nm | 40 | Experiment | [29] |
Multi-rotor | A2G | ~10 m | LOS and NLOS | White light | 10 Mb/s | Simulation | [40] |
Multi-rotor | A2G | ~20 m | LOS | White light | ~10 Mb/s | Simulation | [42] |
Multi-rotor | A2G | 2 km | LOS | 600 nm | Gb/s | Simulation | [123] |
- | A2G | 0.2–6 m | LOS | 1550 nm | - | Simulation | [124] |
Multi-rotor | A2G | 100 m | LOS | - | 1 Gb/s | Simulation | [125] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Mei, H.; I, C.-L.; Zhang, H.; Liu, W. Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies. Sensors 2020, 20, 5476. https://doi.org/10.3390/s20195476
Ding J, Mei H, I C-L, Zhang H, Liu W. Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies. Sensors. 2020; 20(19):5476. https://doi.org/10.3390/s20195476
Chicago/Turabian StyleDing, Jupeng, Hongye Mei, Chih-Lin I, Hui Zhang, and Wenwen Liu. 2020. "Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies" Sensors 20, no. 19: 5476. https://doi.org/10.3390/s20195476
APA StyleDing, J., Mei, H., I, C.-L., Zhang, H., & Liu, W. (2020). Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies. Sensors, 20(19), 5476. https://doi.org/10.3390/s20195476