Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Light Field Imaging Based on LC Microlens
2.3. Resolution of Light Field Imaging Based on LC Microlens
2.4. High Resolution of Light Field Imaging Based on LC Microlens
- (1)
- Calculating the central coordinates of every microlens
- (2)
- Calculating the migration
- (3)
- View angle range
- (4)
- High resolution light field imaging
3. Results
3.1. LC Microlens Doped with MWCNTs
3.2. High Resolution Light Field Imaging
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Li, L.; Hou, G. High-resolution light field reconstruction using a hybrid imaging system. Appl. Opt. 2016, 55, 2580. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Scrofani, G.; Incardona, N.; Saavedra, G.; Martínez-Corral, M.; Koch, R. Robust Depth Estimation for Light Field Microscopy. Sensors 2019, 19, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Liu, X.; Pedrini, G.; Osten, W.; Peng, X. Accurate depth estimation in structured light fields. Opt. Express 2019, 27, 13532–13546. [Google Scholar] [CrossRef]
- Qian, W.; Li, H.; Wu, Y. Improvements of resolution of light field imaging based on four-dimensional optical framing via a semi-transparent mirror. Opt. Express 2020, 28, 12542–12557. [Google Scholar] [CrossRef]
- Chen, D.; Sang, X.; Yu, X.; Zeng, X.; Xie, S.; Guo, N. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution. Opt. Express 2016, 24, 29781. [Google Scholar] [CrossRef]
- Galdi, C.; Chiesa, V.; Busch, C.; Correia, P.; Dugelay, J.-L.; Guillemot, C. Light Fields for Face Analysis. Sensors 2019, 19, 2687. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.A.; Nöbauer, T.; Pernía-Andrade, A.; Schlumm, F.; Vaziri, A. Brain-wide 3D light-field imaging of neuronal activity with speckle-enhanced resolution. Optica 2018, 5, 345–353. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Y.; Zhang, C.; Yuan, Y.; Tan, H.-P. Rectification of Images Distorted by Microlens Array Errors in Plenoptic Cameras. Sensors 2018, 18, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Jeong, K.-M.; Hong, S.-I.; Jo, N.-Y.; Park, J.-H. Analysis of image distortion based on light ray field by multi-view and horizontal parallax only integral imaging display. Opt. Express 2012, 20, 23755–23768. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, X.; Pedrini, G.; Osten, W.; Peng, X. Light-field depth estimation considering plenoptic imaging distortion. Opt. Express 2020, 28, 4156–4168. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Yao, G.; Stern, A.; Javidi, B. Synthetic Aperture Integral Imaging Display with Moving Array Lenslet Technique. J. Disp. Technol. 2015, 11, 827–833. [Google Scholar] [CrossRef]
- Jen, T.-H.; Shen, X.; Yao, G.; Huang, Y.-P.; Shieh, H.-P.D.; Javidi, B. Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens. Opt. Express 2015, 23, 18415–18421. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-S.; Javidi, B. Three-dimensional integral imaging with electronically synthesized lenslet arrays. Opt. Lett. 2002, 27, 1767–1769. [Google Scholar] [CrossRef] [PubMed]
- Piao, Y.; Xing, L.; Zhang, M.; Lee, M.-C. Resolution Enhanced Computational Integral Imaging Reconstruction by Using Boundary Folding Mirrors. J. Opt. Soc. Korea 2016, 20, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Jeon, H.-G.; Yoo, D.; Lee, J.-Y.; Kweon, I.S. Light-Field Image Super-Resolution Using Convolutional Neural Network. IEEE Signal Process. Lett. 2017, 24, 848–852. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Pan, F.; Wu, Y.; Zhang, Y.; Xie, X. Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes. Opt. Express 2018, 26, 12441–12454. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Liu, Y.; Sun, J.; Ren, H.; Wu, S.-T. Fast-Response Liquid Crystal Microlens. Micromachines 2014, 5, 300–324. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Xu, S.; Lin, Y.-J.; Wu, S.-T. Adaptive-Focus Lenses. Opt. Photon-News 2008, 19, 42–47. [Google Scholar] [CrossRef]
- Lin, H.-C.; Chen, M.-S.; Lin, Y.-H. A Review of Electrically Tunable Focusing Liquid Crystal Lenses. Trans. Electr. Electron. Mater. 2011, 12, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Wang, Y.-J.; Reshetnyak, V. Liquid crystal lenses with tunable focal length. Liq. Cryst. Rev. 2017, 5, 111–143. [Google Scholar] [CrossRef]
- Han, J.I. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses. Sensors 2013, 13, 16583–16590. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Tocnaye, J.-L.D.B.D.L.; Dupont, L. Liquid Crystal Active Glasses for 3D Cinema. J. Disp. Technol. 2010, 6, 522–530. [Google Scholar] [CrossRef]
- Hassanfiroozi, A.; Huang, Y.-P.; Javidi, B.; Shieh, H.-P.D. Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system. Opt. Express 2016, 24, 8527–8538. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Deng, H.; Li, J.-J.; He, M.-Y.; Li, D.; Wang, J. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt. Lett. 2019, 44, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Shen, X.; Lin, Y.-H.; Javidi, B. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens. Opt. Lett. 2015, 40, 3564–3567. [Google Scholar] [CrossRef] [PubMed]
- Klapp, I.; Solodar, A.; Abdulhalim, I. Tunable extended depth of field using a liquid crystal annular spatial filter. Opt. Lett. 2014, 39, 1414–1417. [Google Scholar] [CrossRef]
- Chen, H.-S.; Lin, Y.-H. An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field. Opt. Express 2013, 21, 18079–18088. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; He, W.; Wei, D.; Hu, C.; Shi, J.; Zhang, X.; Wang, H.; Xie, C. Depth-of-Field-Extended Plenoptic Camera Based on Tunable Multi-Focus Liquid-Crystal Microlens Array. Sensors 2020, 20, 4142. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chien, L.-C. Carbon nanotube doped liquid crystal OCB cells: Physical and electro-optical properties. Opt. Express 2008, 16, 12777–12785. [Google Scholar] [CrossRef]
- Lee, W.; Chiu, C.-S. Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. Opt. Lett. 2001, 26, 521–523. [Google Scholar] [CrossRef]
- Unnithan, R.R.; Butt, H.; Wilkinson, T.D. Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device. Opt. Lett. 2009, 34, 1237. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, P.; Yuntao, W.; Yanduo, Z.; Xiaolin, X. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal. Appl. Opt. 2016, 55, 140–147. [Google Scholar] [CrossRef]
- Levoy, M.; Hanrahan, P. Light field rendering. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’96, New Orleans, LA, USA, 4–9 August 1996; Association for Computing Machinery (ACM): New York, NY, USA, 1996; pp. 31–42. [Google Scholar]
- Hoshino, H.; Okano, F.; Isono, H.; Yuyama, I. Analysis of resolution limitation of integral photography. J. Opt. Soc. Am. A 1998, 15, 2059. [Google Scholar] [CrossRef]
- Li, H.; Wentong, Q.; Fan, P.; Yuntao, W.; Yanduo, Z.; Xiaolin, X. Electro-optical dynamic behavior of a nematic liquid crystal lens with added multi-walled carbon nanotubes. OSA Contin. 2019, 2, 805–813. [Google Scholar] [CrossRef]
Samples | Applied Voltage (Vrms) | Focusing Time 1 (s) |
---|---|---|
The conventional LC microlens with the same structure | ~3.6 Vrms | 0.19 s |
The proposed LC microlens doped with MWCNTs | ~2.0 Vrms | 0.056 s |
Group | Methods 1 | Brenner | Tenengrad | SMD | SMD2 | Energy |
---|---|---|---|---|---|---|
1 | Aperiodicity | 13.3598 | 531.2426 | 27.4526 | 2.1687 | 14.3888 |
Weighted average | 26.0006 | 533.3033 | 55.3037 | 2.9036 | 15.9905 | |
Periodicity | 8.9171 | 527.6577 | 20.7732 | 1.5732 | 9.9713 | |
2 | Aperiodicity | 24.1978 | 528.2426 | 42.4632 | 7.8036 | 33.2994 |
Weighted average | 45.3598 | 529.0915 | 97.2692 | 8.2571 | 97.2692 | |
Periodicity | 20.6397 | 528.9765 | 21.7168 | 2.7442 | 13.0914 | |
3 | Aperiodicity | 3.3625 | 531.2426 | 17.7065 | 5.7895 | 4.4805 |
Weighted average | 16.1247 | 532.0854 | 42.6130 | 6.3879 | 8.4805 | |
Periodicity | 0.8503 | 525.0854 | 8.7082 | 1.7161 | 2.8505 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yu, Y.; Peng, J.; Wu, Y.; Zhang, Y. Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes. Sensors 2020, 20, 5557. https://doi.org/10.3390/s20195557
Li H, Yu Y, Peng J, Wu Y, Zhang Y. Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes. Sensors. 2020; 20(19):5557. https://doi.org/10.3390/s20195557
Chicago/Turabian StyleLi, Hui, Yi Yu, Jing Peng, Yuntao Wu, and Yanduo Zhang. 2020. "Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes" Sensors 20, no. 19: 5557. https://doi.org/10.3390/s20195557
APA StyleLi, H., Yu, Y., Peng, J., Wu, Y., & Zhang, Y. (2020). Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes. Sensors, 20(19), 5557. https://doi.org/10.3390/s20195557