A Biological Retina Inspired Tone Mapping Processor for High-Speed and Energy-Efficient Image Enhancement
Abstract
:1. Introduction
2. Biological Retina Inspired Tone Mapping Algorithm
3. Proposed Biological Retina Inspired Tone Mapping Processor
3.1. Data Partition Based Parallel Processing with S-Shape Sliding
3.2. Adjacent Frame Feature Sharing Technique
3.3. Multi-Layer Convolution Pipelining
3.4. Convolution Filter Compression with Zero Skipping Convolution
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, J.; Hore, A.; Yadid-Pecht, O. Local tone mapping algorithm and hardware implementation. Electron. Lett. 2018, 54, 560–562. [Google Scholar] [CrossRef]
- Horé, A.; Yadid-Pecht, O. A statistical derivation of an automatic tone mapping algorithm for wide dynamic range display. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 2475–2479. [Google Scholar]
- Vonikakis, V.; Andreadis, I.; Gasteratos, A. Fast centre-surround contrast modification. IET Image Process. 2008, 2, 19–34. [Google Scholar] [CrossRef]
- Ferradans, S.; Bertalmio, M.; Provenzi, E.; Caselles, V. An Analysis of Visual Adaptation and Contrast Perception for Tone Mapping. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2002–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, Z.; Jobson, D.J.; Woodell, G.A. Retinex processing for automatic image enhancement. In Proceedings of the Human Vision and Electronic Imaging VII, San Jose, CA, USA, 21–24 January 2002; Volume 4662, pp. 390–402. [Google Scholar]
- Drago, F.; Martens, W.; Myszkowski, K.; Chiba, N.; Rogowitz, B.; Pappas, T. Design of a Tone Mapping Operator for High Dynamic Range Images Based upon Psychophysical Evaluation and Preference Mapping. In Proceedings of the Human Vision and Electronic Imaging VIII (HVEI-03), SPIE, Santa Clara, CA, USA, 17 June 2003; Volume 5007, pp. 321–331. [Google Scholar]
- Zhang, X.-S.; Li, Y.-J. A retina inspired model for high dynamic range image rendering. In International Conference on Brain Inspired Cognitive Systems; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Ofili, C.; Glozman, S.; Yadid-Pecht, O. Hardware Implementation of an Automatic Rendering Tone Mapping Algorithm for a Wide Dynamic Range Display. J. Low Power Electron. Appl. 2013, 3, 337–367. [Google Scholar] [CrossRef]
- Ofili, C.A.; Glozman, S.; Yadid-Pecht, O. An in-depth analysis and image quality assessment of an exponent-based tone mapping algorithm. Int. J. Inf. Models Anal. 2012, 1, 236–250. [Google Scholar]
- Ambalathankandy, P.; Horé, A.; Yadid-Pecht, O. An FPGA implementation of a tone mapping algorithm with a halo-reducing filter. J. Real-Time Image Process. 2019, 16, 1317–1333. [Google Scholar] [CrossRef]
- Ureña, R.; Martínez-Cañada, P.; Gómez-López, J.M.; Morillas, C.; Pelayo, F. Real-time tone mapping on GPU and FPGA. J. Image Video Proc. 2012, 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Leo Joseph, L.M.I.; Rajarajan, S. Reconfigurable hybrid vision enhancement system using tone mapping and adaptive gamma correction algorithm for night surveillance robot. Multimed. Tools Appl. 2019, 78, 6013–6032. [Google Scholar] [CrossRef]
- Martínez Cañada, P.; Morillas, C.; Ureña, R.; Gómez López, J.M.; Pelayo, F.J. Embedded system for contrast enhancement in low-vision. J. Syst. Archit. 2013, 59, 30–38. [Google Scholar] [CrossRef]
- Shahnovich, U.; Hore, A.; Yadid-Pecht, O. Hardware implementation of a real-time tone mapping algorithm based on a mantissa-exponent representation. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016; pp. 2210–2213. [Google Scholar]
- Popovic, V.; Pignat, E.; Leblebici, Y. Performance Optimization and FPGA Implementation of Real-Time Tone Mapping. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 803–807. [Google Scholar] [CrossRef] [Green Version]
- Drago, F.; Myszkowski, K.; Annen, T.; Chiba, N. Adaptive Logarithmic Mapping for Displaying High Contrast Scenes. Comput. Graphics Forum 2003, 22, 419–426. [Google Scholar] [CrossRef]
- Eilertsen, G.; Mantiuk, R.K.; Unger, J. A comparative review of tone-mapping algorithms for high dynamic range video. Comput. Graphics Forum 2017, 36, 565–592. [Google Scholar] [CrossRef] [Green Version]
- Devlin, K. A Review of Tone Reproduction Techniques; Tech. Rep. CSTR-02-005; Computer Science, University of Bristol: Bristol, UK, 2002. [Google Scholar]
- Krasula, L.; Narwaria, M.; Fliegel, K.; Le Callet, P. Preference of Experience in Image Tone-Mapping: Dataset and Framework for Objective Measures Comparison. IEEE J. Sel. Top. Signal Process. 2017, 11, 64–74. [Google Scholar] [CrossRef]
- Zhuang, L.; Guan, Y. Image Enhancement by Deep Learning Network Based on derived image and Retinex. In Proceedings of the 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 11–13 October 2019; pp. 1670–1673. [Google Scholar]
- Steffens, C.; Drews, P.L.J.; Silva Botelho, S. Deep Learning Based Exposure Correction for Image Exposure Correction with Application in Computer Vision for Robotics. In Proceedings of the 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), Joao Pessoa, Brazil, 6–10 November 2018; pp. 194–200. [Google Scholar]
- Ke, X.; Lin, W.; Chen, G.; Chen, Q.; Qi, X.; Ma, J. EDLLIE-Net: Enhanced Deep Convolutional Networks for Low-Light Image Enhancement. In Proceedings of the 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China, 10–12 July 2020; pp. 59–68. [Google Scholar]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Mark Fairchild’s HDR Photographic Survey. Available online: http://rit-mcsl.org/fairchild//HDR.html (accessed on 20 September 2007).
Pixel Value Range | >m + 3s | (m + 2s, m + 3s) | (m + s, m + 2s) | (m − s, m + s) | (m − 2s, m − s) | (m − 3s, m − 2s) | <m − 3s |
Image | PSNR (dB) | SSIM |
---|---|---|
Image 1 | 80.8673 | 0.9999 |
Image 2 | 80.3091 | 0.9997 |
Image 3 | 83.2211 | 0.9999 |
Image 4 | 80.9242 | 1.0000 |
Image 5 | 82.7327 | 1.0000 |
Image 6 | 84.3424 | 1.0000 |
Average | 82.0661 | 0.9999 |
FPGA Family | Clock Frequency (MHz) | Reg | LUT | DSP |
---|---|---|---|---|
Virtex7 | 150 | 22,693 (3.74%) | 42,611 (14.04%) | 675 (24.11%) |
Ref. | FPGA Type | Retina-Inspired | Clock Frequency (MHz) | PSNR | SSIM | Throughput | Energy Efficiency (pixels/mW/s) |
---|---|---|---|---|---|---|---|
[1] | Cyclone III | NO | 100 | N/A | N/A | 1024 × 768 126 fps | N/A |
[11] | Cyclone III | NO | 100 | 57.27 dB | 0.9969 | 1024 × 768 126 fps | 440,891 |
[12] | Spartan3 | YES | 40.25 | 30.00 dB | N/A | 1024 × 768 60 fps | 81,920 |
[13] | Virtex 6 | NO | 84.5 | 54.18 dB (MAX) | 0.7050 (MAX) | 1024 × 768 30 fps | 66,459 |
[14] | Virtex 6 | NO | 69 | 30.00 dB | N/A | 640 × 480 60 fps | 61,645 |
Ours | Virtex 7 | YES | 150 | 82.06 dB | 0.9999 | 1024 × 768 189 fps | 544,453 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, X.; Liu, L.; Que, L.; Jia, C.; Yan, B.; Li, Y.; Guo, J.; Zhou, J. A Biological Retina Inspired Tone Mapping Processor for High-Speed and Energy-Efficient Image Enhancement. Sensors 2020, 20, 5600. https://doi.org/10.3390/s20195600
Xiang X, Liu L, Que L, Jia C, Yan B, Li Y, Guo J, Zhou J. A Biological Retina Inspired Tone Mapping Processor for High-Speed and Energy-Efficient Image Enhancement. Sensors. 2020; 20(19):5600. https://doi.org/10.3390/s20195600
Chicago/Turabian StyleXiang, Xiaoqiang, Lili Liu, Luying Que, Conghan Jia, Bo Yan, Yongjie Li, Jinhong Guo, and Jun Zhou. 2020. "A Biological Retina Inspired Tone Mapping Processor for High-Speed and Energy-Efficient Image Enhancement" Sensors 20, no. 19: 5600. https://doi.org/10.3390/s20195600
APA StyleXiang, X., Liu, L., Que, L., Jia, C., Yan, B., Li, Y., Guo, J., & Zhou, J. (2020). A Biological Retina Inspired Tone Mapping Processor for High-Speed and Energy-Efficient Image Enhancement. Sensors, 20(19), 5600. https://doi.org/10.3390/s20195600