Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report
Abstract
:1. Introduction
2. Functioning Principle and Measurement Modes of Capacitive EIS Sensors
3. Chemical Sensors and Biosensors Based on Capacitive EIS Structures
3.1. EIS pH Sensor
3.2. Ion-Sensitive EIS Sensors
3.3. Enzyme-Modified EIS Biosensors
penicillin + H2O → penicilloic acid + H+
NH2-CO-NH2 (urea) + 2H2O + H+ → 2NH4+ + HCO3−
3.4. Label-Free Detection of Charged Molecules
3.4.1. Detection of DNA Molecules
3.4.2. Detection of Biomarkers and Other Charged Molecules
3.4.3. Detection of the Consecutive Adsorption of Oppositely Charged PE Macromolecules
3.4.4. Label-Free Biosensing with AuNP-Modified EIS Structures
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mu, L.; Chang, Y.; Sawtelle, S.D.; Wipf, M.; Duan, X.; Reed, M.A. Silicon nanowire field-effect transistors—A versatile class of potentiometric nanobiosensors. IEEE Access 2015, 3, 287–302. [Google Scholar] [CrossRef]
- Poghossian, A.; Schultze, J.W.; Schöning, M.J. Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle. Sens. Actuators B 2003, 91, 83–91. [Google Scholar] [CrossRef]
- Lee, C.-S.; Kim, S.K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009, 9, 7111–7131. [Google Scholar] [CrossRef]
- Jeho, P.; Hoang, H.N.; Abdela, W.; Moonil, K. Applications of field-effect transistor (FET)-type biosensors. Appl. Sci. Converg. Technol. 2014, 23, 61–71. [Google Scholar]
- Zhou, W.; Dai, X.; Lieber, C.M. Advances in nanowire bioelectronics. Rep. Prog. Phys. 2017, 80, 016701. [Google Scholar] [CrossRef] [PubMed]
- Pullano, S.A.; Critello, C.D.; Mahbub, I.; Tasneem, N.T.; Shamsir, S.; Islam, S.K.; Greco, M.; Fiorillo, A.S. EGFET-based sensors for bioanalytical applications: A review. Sensors 2018, 18, 4042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouzar, M.H.; Poghossian, A.; Pedraza, A.M.; Gandhi, D.; Ingebrandt, S.; Moritz, W.; Schöning, M.J. An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing. Biosens. Bioelectron. 2011, 26, 3023–3028. [Google Scholar] [CrossRef]
- Garyfallou, G.Z.; de Smet, L.C.P.M.; Sudhölter, E.J.R. The effect of the type of doping on the electrical characteristics of electrolyte-oxide-silicon sensors: pH sensing and polyelectrolyte adsorption. Sens. Actuators B 2012, 168, 207–213. [Google Scholar] [CrossRef]
- Dastidar, S.; Agarwal, A.; Kumar, N.; Bal, V.; Panda, S. Sensitivity enhancement of electrolyte-insulator-semiconductor sensors using mesotextured and nanotextured dielectric surfaces. IEEE Sens. J. 2015, 15, 2039–2045. [Google Scholar] [CrossRef]
- Yoshinobu, T.; Ecken, H.; Poghossian, A.; Lüth, H.; Iwasaki, H.; Schöning, M.J. Alternative sensor materials for light-addressable potentiometric sensors. Sens. Actuators B 2001, 76, 388–392. [Google Scholar] [CrossRef]
- Wu, C.; Bronder, T.; Poghossian, A.; Werner, C.F.; Schöning, M.J. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer. Nanoscale 2015, 7, 6143–6150. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Poghossian, A.; Bronder, T.S.; Schöning, M.J. Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sens. Actuators B 2016, 229, 506–512. [Google Scholar] [CrossRef]
- Yoshinobu, T.; Miyamoto, K.; Werner, C.F.; Poghossian, A.; Wagner, T.; Schöning, M.J. Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species. Annu. Rev. Anal. Chem. 2017, 10, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.O.; Krull, U.J. Silicon nanowires as field-effect transducers for biosensor development: A review. Anal. Chim. Acta 2014, 825, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lee, S.; Koo, K.-I.; Kim, K. Nanowire-based sensors for biological and medical applications. IEEE Trans. Nanobiosci. 2016, 15, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.-I.; Kim, K.; Cho, D.D. Nanowire-based biosensors: From growth to applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, A.; Chen, S.; Wang, Y.; Li, T. Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sens. Mater. 2018, 30, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Seong, T.W.; Jeun, M.; Lee, K.H. Field-effect biosensors for on-site detection: Recent advances and promising targets. Adv. Healthc. Mater. 2017, 6, 1700796. [Google Scholar] [CrossRef]
- Syu, Y.-C.; Hsu, W.-E.; Lin, C.-T. Review—Field-effect transistor biosensing: Devices and clinical applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3196–Q3207. [Google Scholar] [CrossRef]
- Alabsi, S.S.; Ahmed, A.Y.; Dennis, J.O.; Khir, M.H.M.; Algamili, A.S. A review of carbon nanotube field effect-based biosensors. IEEE Access 2020, 8, 69509–69521. [Google Scholar] [CrossRef]
- Schöning, M.J.; Poghossian, A. Bio FEDs (field-effect devices): State-of-the-art and new directions. Electroanalysis 2006, 18, 1893–1900. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J. Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis 2014, 26, 1197–1213. [Google Scholar] [CrossRef]
- Huang, W.; Diallo, A.K.; Dailey, J.L.; Besar, K.; Katz, H.E. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J. Mater. Chem. C 2015, 3, 6445–6470. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, A.C.M.; Kubota, L.T. Recent trends in field-effect transistors-based immunosensors. Chemosensors 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Syedmoradi, L.; Ahmadi, A.; Norton, M.L.; Omidfar, K. A review on nanomaterial-based field effect transistor technology for biomarker detection. Microchim. Acta 2019, 186, 739. [Google Scholar] [CrossRef]
- Fabry, P.; Laurent-Yvonnou, L. The C-V method for characterizing ISFET or EOS device with ion-sensitive membranes. J. Electroanal. Chem. 1990, 286, 23–40. [Google Scholar] [CrossRef]
- Poghossian, A.; Ingebrandt, S.; Abouzar, M.H.; Schöning, M.J. Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation. Appl. Phys. A 2007, 87, 517–524. [Google Scholar] [CrossRef]
- Klein, M. Characterisation of ion-sensitive layer systems with a C (V) measurement method operating at constant capacitance. Sens. Actuators B 1990, 1, 354–356. [Google Scholar] [CrossRef]
- Schöning, M.J.; Brinkmann, D.; Rolka, D.; Demuth, C.; Poghossian, A. CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure. Sens. Actuators B 2005, 111–112, 423–429. [Google Scholar] [CrossRef]
- Poghossian, A.; Bäcker, M.; Mayer, D.; Schöning, M.J. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids. Nanoscale 2015, 7, 1023–1031. [Google Scholar] [CrossRef]
- Lee, T.N.; Chen, H.J.H.; Huang, Y.-C.; Hsieh, K.-C. Electrolyte-insulator-semiconductor pH sensors with arrayed patterns manufactured by nano imprint technology. J. Electrochem. Soc. 2018, 165, B767–B772. [Google Scholar] [CrossRef]
- Jang, H.-J.; Kim, M.-S.; Cho, W.-J. Development of engineered sensing membranes for field-effect ion-sensitive devices based on stacked high-κ dielectric layers. IEEE Electron. Device Lett. 2011, 32, 973–975. [Google Scholar] [CrossRef]
- Oh, J.Y.; Jang, H.-J.; Cho, W.-J.; Islam, M.S. Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane. Sens. Actuators B 2012, 171–172, 238–243. [Google Scholar] [CrossRef]
- Schöning, M.J.; Tsarouchas, D.; Beckers, L.; Schubert, J.; Zander, W.; Kordos, P.; Lüth, H. A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique. Sens. Actuators B 1996, 35, 228–233. [Google Scholar] [CrossRef]
- Chen, M.; Jin, Y.; Qu, X.; Jin, Q.; Zhao, J. Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment. Sens. Actuators B 2014, 192, 399–405. [Google Scholar] [CrossRef]
- Veigas, B.; Branquinho, R.; Pinto, J.V.; Wojcik, P.J.; Martins, R.; Fortunato, E.; Baptista, P.V. Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosens. Bioelectron. 2014, 52, 50–55. [Google Scholar] [CrossRef]
- Chang, L.-B.; Lee, Y.-L.; Lai, C.-S.; Hsieh, L.-Z.; Ko, H.-H. The pH-sensitive characteristics of thermal stacked ZrO2/SiO2 sensors. ECS Trans. 2007, 2, 1–9. [Google Scholar] [CrossRef]
- Lai, C.-S.; Yang, C.-M.; Lu, T.-F. pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing. Electrochem. Solid-State Lett. 2006, 9, G90–G92. [Google Scholar] [CrossRef]
- Yang, C.-M.; Lai, C.-S.; Lu, T.-F.; Wang, T.-C.; Pijanowska, D.G. Drift and hysteresis effects improved by RTA treatment on hafnium oxide in pH-sensitive applications. J. Electrochem. Soc. 2008, 155, J326–J330. [Google Scholar] [CrossRef]
- Lu, T.-F.; Wang, J.-C.; Yang, C.-M.; Chang, C.-P.; Ho, K.-I.; Ai, C.-F.; Lai, C.-S. Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte-insulator-semiconductor structure for pH-sensor application. Microelectron. Reliab. 2010, 50, 742–746. [Google Scholar] [CrossRef]
- Lu, T.-F.; Chuang, H.-C.; Wang, J.-C.; Yang, C.-M.; Kuo, P.-C.; Lai, C.-S. Effects of thickness effect and rapid thermal annealing on pH sensing characteristics of thin HfO2 films formed by atomic layer deposition. Jpn. J. Appl. Phys. 2011, 50, 10PG03. [Google Scholar] [CrossRef]
- Kao, C.H.; Chen, H.; Lee, M.L.; Liu, C.C.; Ueng, H.-Y.; Chu, Y.C.; Chen, C.B.; Chang, K.M. Effects of N2 and O2 annealing on the multianalyte biosensing characteristics of CeO2-based electrolyte-insulator-semiconductor structures. Sens. Actuators B 2014, 194, 503–510. [Google Scholar] [CrossRef]
- Chang, L.-B.; Ko, H.-H.; Lee, Y.-L.; Lai, C.-S.; Wang, C.-Y. The electrical and pH-sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors. J. Electrochem. Soc. 2006, 153, G330–G332. [Google Scholar] [CrossRef]
- Yang, C.-M.; Wang, C.-Y.; Lai, C.-S. Characterization on pH sensing performance and structural properties of gadolinium oxide post-treated by nitrogen rapid thermal annealing. J. Vac. Sci. Technol. B 2014, 32, 03D113. [Google Scholar] [CrossRef]
- Kao, C.H.; Wang, J.C.; Lai, C.S.; Huang, C.Y.; Ou, J.C.; Wang, H.Y. Ti-doped Gd2O3 sensing membrane for electrolyte-insulator-semiconductor pH sensor. Thin Solid Films 2012, 520, 3760–3763. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, C.-W. Structural and sensing properties of high-k Lu2O3 electrolyte-insulator-semiconductor pH sensors. J. Electrochem. Soc. 2011, 158, J96–J99. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, C.-W.; Lin, J.-C.; Wu, M.-H. Structural properties and sensing characteristics of thin Nd2O3 sensing films for pH detection. Electrochem. Solid-State Lett. 2009, 12, J96–J99. [Google Scholar] [CrossRef]
- Pan, T.-M.; Cheng, C.-H.; Lee, C.-D. Yb2O3 thin films as a sensing membrane for pH-ISFET application. J. Electrochem. Soc. 2009, 156, J108–J111. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, C.-W. Structural and sensing characteristics of Dy2O3 and Dy2TiO5 electrolyte-insulator-semiconductor pH sensors. J. Phys. Chem. C 2010, 114, 17914–17919. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, C.-W.; Hsu, B.-K. Post-deposition anneal on structural and sensing characteristics of high-κ Er2TiO5 electrolyte-insulator-semiconductor pH sensors. IEEE Electron. Device Lett. 2012, 33, 116–118. [Google Scholar] [CrossRef]
- Jan, S.-S.; Chen, Y.-C.; Chou, J.-C.; Cheng, C.-C.; Lu, C.-T. Preparation and properties of lead titanate gate ion-sensitive field-effect transistors by the sol-gel method. Jpn. J. Appl. Phys. 2002, 41, 942–948. [Google Scholar] [CrossRef]
- Singh, K.; Lou, B.-S.; Her, J.-L.; Pan, T.-M. Influence of annealing temperature on structural compositions and pH sensing properties of sol-gel derived YTixOy electroceramic sensing membranes. J. Electrochem. Soc. 2019, 166, B187–B192. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lee, Y.-F.; Lin, C.-W.; Tsai, S.-W.; Wang, H.-Y.; Pan, T.-M. Development of high-k Tm2Ti2O7 sensing membrane-based electrolyte-insulator-semiconductor for pH detection and its application for glucose biosensing using poly(N-isopropylacrylamide) as an enzyme encapsulation material. J. Mater. Chem. 2011, 21, 539–547. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chou, J.-C.; Chou, H.-T. pH Sensing of Ba0.7Sr0.3TiO3/SiO2 film for metal-oxide-semiconductor and ion-sensitive field-effect transistor devices. J. Electrochem. Soc. 2009, 156, G59–G64. [Google Scholar] [CrossRef]
- Buniatyan, V.V.; Abouzar, M.H.; Martirosyan, N.W.; Schubert, J.; Gevorgian, S.; Schöning, M.J.; Poghossian, A. pH-sensitive properties of barium strontium titanate (BST) thin films prepared by pulsed laser deposition technique. Phys. Status Solidi A 2010, 207, 824–830. [Google Scholar] [CrossRef]
- Huck, C.; Poghossian, A.; Kerroumi, I.; Schusser, S.; Bäcker, M.; Zander, W.; Schubert, J.; Buniatyan, V.V.; Martirosyan, N.W.; Wagner, P.; et al. Multiparameter sensor chip with barium strontium titanate as multipurpose material. Electroanalysis 2014, 26, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-S.; Lue, C.-E.; Yang, C.-M.; Pijanowska, D.G. Fluorine incorporation and thermal treatment on single and stacked Si3N4 membranes for ISFET/REFET application. J. Electrochem. Soc. 2010, 157, J8–J12. [Google Scholar] [CrossRef]
- Poghossian, A.; Abouzar, M.H.; Razavi, A.; Bäcker, M.; Bijnens, N.; Williams, O.A.; Haenen, K.; Moritz, W.; Wagner, P.; Schöning, M.J. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure. Electrochim. Acta 2009, 54, 5981–5985. [Google Scholar] [CrossRef]
- Yates, D.E.; Levine, S.; Healy, T.W. Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. I 1974, 70, 1807–1818. [Google Scholar] [CrossRef]
- Niu, M.-N.; Ding, X.-F.; Tong, Q.-Y. Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFET. Sens. Actuators B 1996, 37, 13–17. [Google Scholar] [CrossRef]
- Van Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B 1995, 24–25, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Oelßner, W.; Zosel, J.; Guth, U.; Pechstein, T.; Babel, W.; Connery, J.G.; Demuth, C.; Grote Gansey, M.; Verburg, J.B. Encapsulation of ISFET sensor chips. Sens. Actuators B 2005, 105, 104–117. [Google Scholar] [CrossRef]
- Bäcker, M.; Beging, S.; Biselli, M.; Poghossian, A.; Wang, J.; Zang, W.; Wagner, P.; Schöning, M.J. Concept for a solid-state multi-parameter sensor system for cell-culture monitoring. Electrochim. Acta 2009, 54, 6107–6112. [Google Scholar]
- Bäcker, M.; Pouyeshman, S.; Schnitzler, T.; Poghossian, A.; Wagner, P.; Biselli, M.; Schöning, M.J. A silicon-based multi-sensor chip for monitoring of fermentation processes. Phys. Status Solidi A 2011, 208, 1364–1369. [Google Scholar] [CrossRef]
- Huck, C.; Schiffels, J.; Herrera, C.N.; Schelden, M.; Selmer, T.; Poghossian, A.; Baumann, M.E.M.; Wagner, P.; Schöning, M.J. Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor. Phys. Status Solidi A 2013, 210, 926–931. [Google Scholar] [CrossRef]
- Mathew, A.; Pandian, G.; Bhattacharya, E.; Chadha, A. Novel applications of silicon and porous silicon based EISCAP biosensors. Phys. Status Solidi A 2009, 206, 1369–1373. [Google Scholar] [CrossRef]
- Mourzina, Y.; Mai, T.; Poghossian, A.; Ermolenko, Y.; Yoshinobu, T.; Vlasov, Y.; Iwasaki, H.; Schöning, M.J. K+-selective field-effect sensors as transducers for bioelectronics applications. Electrochim. Acta 2003, 48, 3333–3339. [Google Scholar] [CrossRef]
- Poghossian, A.; Mai, D.-T.; Mourzina, Y.; Schöning, M.J. Impedance effect of an ion-sensitive membrane: Characterisation of an EMIS sensor by impedance spectroscopy, capacitance-voltage and constant-capacitance method. Sens. Actuators B 2004, 103, 423–428. [Google Scholar] [CrossRef]
- Beging, S.; Mlynek, D.; Hataihimakul, S.; Poghossian, A.; Baldsiefen, G.; Busch, H.; Laube, N.; Kleinen, L.; Schöning, M.J. Field-effect calcium sensor for the determination of the risk of urinary stone formation. Sens. Actuators B 2010, 144, 374–379. [Google Scholar] [CrossRef]
- Zazoua, A.; Morakchi, K.; Kherrat, R.; Samar, M.H.; Errachid, A.; Jaffrezic-Renault, N.; Boubellout, R. Electrochemical characterization of an EIS sensor functionalized with a TOPO doped polymeric layer for Cr(VI) detection. ITBM-RBM 2008, 29, 187–191. [Google Scholar] [CrossRef]
- Braik, M.; Dridi, C.; Ali, M.B.; Ali, M.; Abbas, M.; Zabala, M.; Bausells, J.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A. Development of a capacitive chemical sensor based on Co(II)-phthalocyanine acrylate-polymer/HfO2/SiO2/Si for detection of perchlorate. J. Sens. Sens. Syst. 2015, 4, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Kim, K.; Meyyappan, M.; Baek, C.-K. LaF3 electrolyte-insulator-semiconductor sensor for detecting fluoride ions. Sens. Actuators B 2019, 279, 183–188. [Google Scholar] [CrossRef]
- Spelthahn, H.; Schaffrath, S.; Coppe, T.; Rufi, F.; Schöning, M.J. Development of an electrolyte-insulator-semiconductor (EIS) based capacitive heavy metal sensor for the detection of Pb2+ and Cd2+ ions. Phys. Status Solidi A 2010, 207, 930–934. [Google Scholar] [CrossRef]
- Barhoumi, H.; Haddad, R.; Maaref, A.; Bausells, J.; Bessueille, F.; Léonard, D.; Jaffrezic-Renault, N.; Martelet, C.; Zine, N.; Errachid, A. Na+-implanted membrane for a capacitive sodium electrolyte-insulator-semiconductor microsensors. Sens. Lett. 2008, 6, 204–208. [Google Scholar] [CrossRef]
- Nouira, W.; Haddad, R.; Barhoumi, H.; Maaref, A.; Bausells, J.; Bessueille, F.; Léonard, D.; Jaffrezic-Renault, N.; Errachid, A. Na+ and K+ implanted membranes for micro-sensors development. Sens. Lett. 2009, 7, 689–693. [Google Scholar] [CrossRef]
- Sakly, H.; Mlika, R.; Chaabane, H.; Beji, L.; Ouada, H.B. Anodically oxidized porous silicon as a substrate for EIS sensors. Mater. Sci. Eng. C 2006, 26, 232–235. [Google Scholar] [CrossRef]
- Chermiti, J.; Ben Ali, M.; Jaffrezic-Renault, N. Numerical modelling of electrical behaviour of semiconductor-based micro-sensors for copper ions detection. Sens. Lett. 2011, 9, 2339–2342. [Google Scholar] [CrossRef]
- Bergaoui, Y.; Ben Ali, M.; Abdelghani, A.; Vocanson, F.; Jaffrezic-Renault, N. Electrochemical study of Si/SiO2/Si3N4 structures and gold electrodes functionalized with amide thiacalix[4]arene for the detection of Hg2+ ions in solution. Sens. Lett. 2009, 7, 694–701. [Google Scholar] [CrossRef]
- Ijeri, V.S.; Nair, J.R.; Zanarini, S.; Gerbaldi, C. Capacitive and impedimetric sensors based on macrocyclic compounds. Int. J. Anal. Chem. 2011, 2, 60–71. [Google Scholar]
- Molinnus, D.; Muschallik, L.; Gonzalez, L.O.; Bongaerts, J.; Wagner, T.; Selmer, T.; Siegert, P.; Keusgen, M.; Schöning, M.J. Development and characterization of a field-effect biosensor for the detection of acetoin. Biosens. Bioelectron. 2018, 115, 1–6. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chiang, C.-H.; Wu, M.-H.; Pan, T.-M.; Luo, J.-D.; Chiou, C.-C. Solid-state sensor incorporated in microfluidic chip and magnetic-bead enzyme immobilization approach for creatinine and glucose detection in serum. Appl. Phys. Lett. 2011, 99, 253704. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Wang, S.-H.; Wu, M.-H.; Pan, T.-M.; Lai, C.-S.; Luo, J.-D.; Chiou, C.-C. Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads. Biosens. Bioelectron. 2013, 43, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.-M.; Lin, C.-W.; Lin, W.-Y.; Wu, M.-H. High-k Tm2Ti2O7 electrolyte-insulator semiconductor creatinine biosensor. IEEE Sens. J. 2011, 11, 2388–2394. [Google Scholar] [CrossRef]
- Turek, M.; Ketterer, L.; Claßen, M.; Berndt, H.K.; Elbers, G.; Krüger, P.; Keusgen, M.; Schöning, M.J. Development and electrochemical investigations of an EIS-(electrolyte-insulator-semiconductor) based biosensor for cyanide detection. Sensors 2007, 7, 1415–1426. [Google Scholar] [CrossRef] [Green Version]
- Ben Ali, M.; Gonchar, M.; Gayda, G.; Paryzhak, S.; Maaref, M.A.; Jaffrezic-Renault, N.; Korpan, Y. Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens. Bioelectron. 2007, 22, 2790–2795. [Google Scholar] [CrossRef]
- Gun, J.; Schöning, M.J.; Abouzar, M.H.; Poghossian, A.; Katz, E. Field-effect nanoparticle-based glucose sensor on a chip: Amplification effect of coimmobilized redox species. Electroanalysis 2008, 20, 1748–1753. [Google Scholar] [CrossRef]
- Her, J.-L.; Wu, M.-H.; Peng, Y.-B.; Pan, T.-M.; Weng, W.-H.; Pang, S.-T.; Chi, L. High performance GdTixOy electrolyte-insulator-semiconductor pH sensor and biosensor. Int. J. Electrochem. Sci. 2013, 8, 606–620. [Google Scholar]
- Wu, M.-H.; Yang, H.-W.; Hua, M.-Y.; Peng, Y.-B.; Pan, T.-M. High-κ GdTixOy sensing membrane-based electrolyte-insulator-semiconductor with magnetic nanoparticles as enzyme carriers for protein contamination-free glucose biosensing. Biosens. Bioelectron. 2013, 47, 99–105. [Google Scholar] [CrossRef]
- Kao, C.H.; Chen, H.; Lee, M.L.; Liu, C.C.; Ueng, H.-Y.; Chu, Y.C.; Chen, Y.J.; Chang, K.M. Multianalyte biosensor based on pH-sensitive ZnO electrolyte-insulator-semiconductor structures. J. Appl. Phys. 2014, 115, 184701. [Google Scholar]
- Kao, C.H.; Chen, H.; Liu, C.C.; Chen, C.Y.; Chen, Y.T.; Chu, Y.C. Electrical, material and multianalyte-sensitive characteristics of thermal CeO2/SiO2-stacked oxide capacitors. Thin Solid Films 2014, 570, 552–557. [Google Scholar] [CrossRef]
- Kao, C.H.; Chen, H.; Hou, F.Y.S.; Chang, S.W.; Chang, C.W.; Lai, C.S.; Chen, C.P.; He, Y.Y.; Lin, S.-R.; Hsieh, K.M.; et al. Fabrication of multianalyte CeO2 nanograin electrolyte-insulator-semiconductor biosensors by using CF4 plasma treatment. Sens. Biosensing Res. 2015, 5, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Morais, P.V.; Gomes, V.F., Jr.; Silva, A.C.A.; Dantas, N.O.; Schöning, M.J.; Siqueira, J.R., Jr. Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J. Mater. Sci. 2017, 52, 12314–12325. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Das, A.; Wu, M.-H.; Pan, T.-M.; Lai, C.-S. Microfluidic chip integrated with an electrolyte-insulator-semiconductor sensor for pH and glucose level measurement. Int. J. Electrochem. Sci. 2013, 8, 5886–5901. [Google Scholar]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, Y.W.; Wang, C.H. The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte-insulator-semiconductor) for glucose sensing applications. Results Phys. 2020, 16, 102976. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Chen, K.L.; Lin, Y.H. NH3 plasma-treated magnesium doped zinc oxide in biomedical sensors with electrolyte-insulator-semiconductor (EIS) structure for urea and glucose applications. Nanomaterials 2020, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Schöning, M.J.; Arzdorf, M.; Mulchandani, P.; Chen, W.; Mulchandani, A. A capacitive field-effect sensor for the direct determination of organophosphorus pesticides. Sens. Actuators B 2003, 91, 92–97. [Google Scholar] [CrossRef]
- Braham, Y.; Barhoumi, H.; Maaref, A. Urease capacitive biosensors using functionalized magnetic nanoparticles for atrazine pesticide detection in environmental samples. Anal. Methods 2013, 5, 4898–4904. [Google Scholar] [CrossRef]
- Poghossian, A.; Thust, M.; Schöning, M.J.; Müller-Veggian, M.; Kordos, P.; Lüth, H. Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier. Sens. Actuators B 2000, 68, 260–265. [Google Scholar] [CrossRef]
- Siqueira, J.R., Jr.; Abouzar, M.H.; Poghossian, A.; Zucolotto, V.; Oliveira, O.N., Jr.; Schoning, M.J. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens. Bioelectron. 2009, 25, 497–501. [Google Scholar] [CrossRef]
- Abouzar, M.H.; Poghossian, A.; Razavi, A.; Besmehn, A.; Bijnens, N.; Williams, O.A.; Haenen, K.; Wagner, P.; Schöning, M.J. Penicillin detection with nanocrystalline-diamond field-effect sensor. Phys. Status Solidi A 2008, 205, 2141–2145. [Google Scholar] [CrossRef] [Green Version]
- Abouzar, M.H.; Poghossian, A.; Siqueira, J.R., Jr.; Oliveira, O.N., Jr.; Moritz, W.; Schöning, M.J. Capacitive electrolyte-insulator-semiconductor structures functionalized with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing. Phys. Status Solidi A 2010, 207, 884–890. [Google Scholar] [CrossRef]
- Beging, S.; Leinhos, M.; Jablonski, M.; Poghossian, A.; Schöning, M.J. Studying the spatially resolved immobilization of enzymes on a capacitive field-effect structure by means of nano-spotting. Phys. Status Solidi A 2015, 212, 1353–1358. [Google Scholar] [CrossRef]
- Poghossian, A.; Jablonski, M.; Koch, C.; Bronder, T.S.; Rolka, D.; Wege, C.; Schöning, M.J. Field-effect biosensor using virus particles as scaffolds for enzyme immobilization. Biosens. Bioelectron. 2018, 110, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Nouira, W.; Barhoumi, H.; Maaref, A.; Jaffrézic Renault, N.; Siadat, M. Tailoring of analytical performances of urea biosensors using nanomaterials. J. Phys. Conf. Ser. 2013, 416, 012010. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, C.-W. High-k Dy2TiO5 electrolyte-insulator-semiconductor urea biosensors. J. Electrochem. Soc. 2011, 158, J100–J105. [Google Scholar] [CrossRef]
- Siqueira, J.R., Jr.; Molinnus, D.; Beging, S.; Schöning, M.J. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal. Chem. 2014, 86, 5370–5375. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.-S.; Lin, Y.-T.; Huang, C.-H.; Lu, T.-F.; Lue, C.-E.; Yang, P.; Pijanowska, D.G.; Yang, C.-M.; Wang, J.-C.; Yu, J.-S.; et al. Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment. Nanoscale Res. Lett. 2012, 7, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-H.; Cheng, C.-H.; Lai, C.-S.; Pan, T.-M. Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte-insulator-semiconductor for pH and urea detection. Sens. Actuators B 2009, 138, 221–227. [Google Scholar] [CrossRef]
- Sahraoui, Y.; Barhoumi, H.; Maaref, A.; Jaffrezic-Renault, N. A novel capacitive biosensor for urea assay based on modified magnetic nanobeads. Sens. Lett. 2011, 9, 2141–2146. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, J.-C. A TiO2/Er2O3 stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea. Sens. Actuators B 2009, 138, 474–479. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, J.-C.; Wu, M.-H.; Lai, C.-S. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing. Biosens. Bioelectron. 2009, 24, 2864–2870. [Google Scholar] [CrossRef] [PubMed]
- Gun, J.; Rizkov, D.; Lev, O.; Abouzar, M.H.; Poghossian, A.; Schöning, M.J. Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing. Microchim. Acta 2009, 164, 395–404. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J. Nanomaterial-modified capacitive field-effect biosensors. In Label-Free Biosensing: Advanced Materials, Devices and Applications, 1st ed.; Schöning, M.J., Poghossian, A., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 1–26. [Google Scholar]
- Koch, C.; Poghossian, A.; Schöning, M.J.; Wege, C. Penicillin detection by tobacco mosaic virus-assisted colorimetric biosensors. Nanotheranostics 2018, 2, 184–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calò, A.; Eiben, S.; Okuda, M.; Bittner, A.M. Nanoscale device architectures derived from biological assemblies: The case of tobacco mosaic virus and (apo)ferritin. Jpn. J. Appl. Phys. 2016, 55, 03DA01. [Google Scholar] [CrossRef]
- Bäcker, M.; Koch, C.; Eiben, S.; Geiger, F.; Eber, F.; Gliemann, H.; Poghossian, A.; Wege, C.; Schöning, M.J. tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors. Sens. Actuators B 2017, 238, 716–722. [Google Scholar] [CrossRef]
- Molinnus, D.; Beging, S.; Lowis, C.; Schöning, M.J. Towards a multi-enzyme capacitive field-effect biosensor by comparative study of drop-coating and nano-spotting technique. Sensors 2020, 20, 4924. [Google Scholar] [CrossRef]
- Wang, J.; Katz, E. Digital biosensors with built-in logic for biomedical applications—Biosensors based on a biocomputing concept. Anal. Bioanal. Chem. 2010, 398, 1591–1603. [Google Scholar] [CrossRef]
- Lai, Y.H.; Sun, S.C.; Chuang, M.C. Biosensors with built-in biomolecular logic gates for practical applications. Biosensors 2014, 4, 273–300. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.; Minko, S. Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. Chem. Commun. 2015, 51, 3493–3500. [Google Scholar] [CrossRef]
- Katz, E.; Poghossian, A.; Schöning, M.J. Enzyme-based logic gates and circuits—Analytical applications and interfacing with electronics. Anal. Bioanal. Chem. 2017, 409, 81–94. [Google Scholar] [CrossRef]
- Koushanpour, A.; Gamella, M.; Guo, Z.; Honarvarfard, E.; Poghossian, A.; Schöning, M.J.; Alexandrov, K.; Katz, E. Ca2+-switchable glucose dehydrogenase associated with electrochemical/electronic interfaces: Applications to signal-controlled power production and biomolecular release. J. Phys. Chem. B 2017, 121, 11465–11471. [Google Scholar] [CrossRef] [PubMed]
- Molinnus, D.; Bäcker, M.; Iken, H.; Poghossian, A.; Keusgen, M.; Schöning, M.J. Concept for a biomolecular logic chip with an integrated sensor and actuator function. Phys. Status Solidi A 2015, 212, 1382–1388. [Google Scholar] [CrossRef]
- Molinnus, D.; Poghossian, A.; Keusgen, M.; Katz, E.; Schöning, M.J. Coupling of biomolecular logic gates with electronic transducers: From single enzyme logic gates to sense/act/treat chips. Electroanalysis 2017, 29, 1840–1849. [Google Scholar] [CrossRef]
- Krämer, M.; Pita, M.; Zhou, J.; Ornatska, M.; Poghossian, A.; Schöning, M.J.; Katz, E. Coupling of biocomputing systems with electronic chips: Electronic interface for transduction of biochemical information. J. Phys. Chem. C 2009, 113, 2573–2579. [Google Scholar] [CrossRef]
- Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schöning, M.J. Integration of biomolecular logic gates with field-effect transducers. Electrochim. Acta 2011, 56, 9661–9665. [Google Scholar] [CrossRef]
- Poghossian, A.; Katz, E.; Schöning, M.J. Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane. Chem. Commun. 2015, 51, 6564–6567. [Google Scholar] [CrossRef]
- Honarvarfard, E.; Gamella, M.; Poghossian, A.; Schöning, M.J.; Katz, E. An enzyme-based reversible controlled NOT (CNOT) logic gate operating on a semiconductor transducer. Appl. Mater. Today 2017, 9, 266–270. [Google Scholar] [CrossRef]
- Jablonski, M.; Poghossian, A.; Molinnus, D.; Keusgen, M.; Katz, E.; Schöning, M.J. Enzyme-based XOR logic gate with electronic transduction of the output signal. Int. J. Unconv. Comput. 2019, 14, 375–383. [Google Scholar]
- Fritz, J.; Cooper, E.; Gaudet, S.; Sorger, P.; Manalis, S. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. USA 2002, 99, 14142–14146. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Kumar, S.; Kumar, J.; Panda, S. Investigation of mechanisms involved in the enhanced label free detection of prostate cancer biomarkers using field effect devices. J. Electrochem. Soc. 2017, 164, B409–B416. [Google Scholar] [CrossRef]
- Bronder, T.S.; Poghossian, A.; Jessing, M.P.; Keusgen, M.; Schöning, M.J. Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures. Biosens. Bioelectron. 2019, 126, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Gun, J.; Gutkin, V.; Lev, O.; Boyen, H.-G.; Saitner, M.; Wagner, P.; D’Olieslaeger, M.; Abouzar, M.H.; Poghossian, A.; Schöning, M.J. Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices. J. Phys. Chem. C 2011, 115, 4439–4445. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.R., Jr.; Abouzar, M.H.; Bäcker, M.; Zucolotto, V.; Poghossian, A.; Oliveira, O.N., Jr.; Schöning, M.J. Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field-effect (bio-)chemical sensors. Phys. Status Solidi A 2009, 206, 462–467. [Google Scholar] [CrossRef]
- Abouzar, M.H.; Poghossian, A.; Cherstvy, A.G.; Pedraza, A.M.; Ingebrandt, S.; Schöning, M.J. Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling. Phys. Status Solidi A 2012, 209, 925–934. [Google Scholar] [CrossRef]
- Pan, T.-M.; Chang, K.-Y.; Lin, C.-W.; Tsai, S.-W.; Wu, M.H. Label-free detection of DNA using high-k Lu2Ti2O7 electrolyte-insulator-semiconductors. J. Mater. Chem. 2012, 22, 1358–1363. [Google Scholar] [CrossRef]
- Bronder, T.S.; Poghossian, A.; Scheja, S.; Wu, C.; Keusgen, M.; Mewes, D.; Schöning, M.J. DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer. ACS Appl. Mater. Interfaces 2015, 7, 20068–20075. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Purwidyantri, A.; Luo, J.-D.; Chiou, C.-C.; Yang, C.-M.; Lo, C.-H.; Hwang, T.-L.; Yen, T.-H.; Lai, C.-S. Programming a nonvolatile memory-like sensor for KRAS gene sensing and signal enhancement. Biosens. Bioelectron. 2016, 79, 63–70. [Google Scholar] [CrossRef]
- Hou, C.-S.J.; Milovic, N.; Godin, M.; Russo, P.R.; Chakrabarti, R.; Manalis, S.R. Label-free microelectronic PCR quantification. Anal. Chem. 2006, 78, 2526–2531. [Google Scholar] [CrossRef]
- Branquinho, R.; Veigas, B.; Pinto, J.V.; Martins, R.; Fortunato, E.; Baptista, P.V. Real-time monitoring of PCR amplification of proto-oncogene c-MYC using a Ta2O5 electrolyte-insulator-semiconductor sensor. Biosens. Bioelectron. 2011, 28, 44–49. [Google Scholar] [CrossRef]
- Bronder, T.S.; Poghossian, A.; Scheja, S.; Wu, C.; Keusgen, M.; Schöning, M.J. Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors. TM. Tech. Mess. 2017, 84, 628–634. [Google Scholar] [CrossRef]
- Hou, C.S.J.; Godin, M.; Payer, K.; Chakrabarti, R.; Manalis, S.R. Integrated microelectronic device for label-free nucleic acid amplification and detection. Lab Chip 2007, 7, 347–354. [Google Scholar] [PubMed]
- Lin, Y.-T.; Luo, J.-D.; Chiou, C.-C.; Yang, C.-M.; Wang, C.-Y.; Chou, C.; Lai, C.-S. Detection of KRAS mutation by combination of polymerase chain reaction (PCR) and EIS sensor with new amino group functionalization. Sens. Actuators B 2013, 186, 374–379. [Google Scholar] [CrossRef]
- Bronder, T.S.; Jessing, M.P.; Poghossian, A.; Keusgen, M.; Schöning, M.J. Detection of PCR-amplified tuberculosis DNA fragments with polyelectrolyte-modified field-effect Sensors. Anal. Chem. 2018, 90, 7747–7753. [Google Scholar] [CrossRef] [PubMed]
- Souteyrand, E.; Cloarec, J.P.; Martin, J.R.; Wilson, C.; Lawrence, I.; Mikkelsen, S.; Lawrence, M.F. Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 1997, 101, 2980–2985. [Google Scholar] [CrossRef]
- Sakata, T.; Miyahara, Y. Detection of DNA recognition events using multi-well field effect devices. Biosens. Bioelectron. 2005, 21, 827–832. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhang, G.; Chua, J.H.; Chee, R.-E.; Wong, E.H.; Agarwal, A.; Buddharaju, K.D.; Singh, N.; Gao, Z.; Balasubramanian, N. DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett. 2008, 8, 1066–1070. [Google Scholar] [CrossRef]
- Liu, Y.; Dutton, R.W. Effects of charge screening and surface properties on signal transduction in field effect nanowire biosensors. J. Appl. Phys. 2009, 106, 014701. [Google Scholar] [CrossRef] [Green Version]
- Nishio, Y.; Uno, S.; Nakazato, K. Three-dimensional simulation of DNA sensing by ion-sensitive field-effect transistor: Optimization of DNA position and orientation. Jpn. J. Appl. Phys. 2013, 52, 04CL01. [Google Scholar] [CrossRef]
- Goode, J.A.; Rushworth, J.V.H.; Millner, P.A. Biosensor regeneration: A review of common techniques and outcomes. Langmuir 2015, 31, 6267–6276. [Google Scholar] [CrossRef]
- Landheer, D.; McKinnon, W.R.; Aers, G.; Jiang, W.; Deen, M.J.; Shinwari, M.W. Calculation of the response of field-effect transistors to charged biological molecules. IEEE Sens. J. 2007, 7, 1233–1242. [Google Scholar] [CrossRef]
- Wunderlich, B.K.; Neff, P.A.; Bausch, A.R. Mechanism and sensitivity of the intrinsic charge detection of biomolecular interactions by field effect devices. Appl. Phys. Lett. 2007, 91, 083904. [Google Scholar] [CrossRef]
- Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.-K.; Green, N.G. Field-effect sensors—From pH sensing to biosensing: Sensitivity enhancement using streptavidin-biotin as a model system. Analyst 2017, 142, 4173–4200. [Google Scholar] [CrossRef] [Green Version]
- Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M.J. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B 2005, 111–112, 470–480. [Google Scholar] [CrossRef]
- Chung, I.-Y.; Seo, M.; Park, C.H. Particle simulation of ionic screening effects in electrolyte-insulator-semiconductor field-effect transistors. J. Semicond. Technol. Sci. 2019, 19, 311–320. [Google Scholar] [CrossRef]
- Kumar, N.; Senapat, S.; Kumar, S.; Kumar, J.; Panda, S. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors. J. Phys. Conf. Ser. 2016, 704, 012013. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, T.-W.; Chen, C.-Y. Label-free detection of rheumatoid factor using YbYxOy electrolyte-insulator-semiconductor devices. Anal. Chim. Acta 2015, 891, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Chand, R.; Han, D.; Kim, Y.-S. Rapid detection of protein kinase on capacitive sensing platforms. IEEE Trans. Nanobiosci. 2016, 15, 843–848. [Google Scholar] [CrossRef]
- Chand, R.; Han, D.; Neethirajan, S.; Kim, Y.-S. Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor. Sens. Actuators B 2017, 248, 973–979. [Google Scholar] [CrossRef]
- Milovic, N.M.; Behr, J.R.; Godin, M.; Hou, C.-S.J.; Payer, K.R.; Chandrasekaran, A.; Russo, P.R.; Sasisekharan, R.; Manalis, S.R. Monitoring of heparin and its low-molecular-weight analogs by silicon field effect. Proc. Natl. Acad. Sci. USA 2006, 103, 13374–13379. [Google Scholar] [CrossRef] [Green Version]
- Bougrini, M.; Baraket, A.; Jamshaid, T.; El Aissari, A.; Bausells, J.; Zabala, M.; El Bari, N.; Bouchikhi, B.; Jaffrezic-Renault, N.; Abdelhamid, E.; et al. Development of a novel capacitance electrochemical biosensor based on silicon nitride for ochratoxin A detection. Sens. Actuators B 2016, 234, 446–452. [Google Scholar] [CrossRef]
- Casal, P.; Wen, X.; Gupta, S.; Nicholson III, T.; Wang, Y.; Theiss, A.; Bhushan, B.; Brillson, L.; Lu, W.; Lee, S.C. ImmunoFET feasibility in physiological salt environments. Philos. Trans. R. Soc. A 2012, 370, 2474–2488. [Google Scholar] [CrossRef] [PubMed]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Rusling, J.; Dixit, C.K. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacic, A.; Reed, M.A. Quantitative nanoscale field effect sensors. J. Exp. Nanosci. 2014, 9, 41–50. [Google Scholar] [CrossRef]
- Luo, X.; Davis, J.J. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 2013, 42, 5944–5962. [Google Scholar] [CrossRef]
- Schönhoff, M. Self-assembled polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 2003, 8, 86–95. [Google Scholar] [CrossRef]
- Poghossian, A.; Abouzar, M.H.; Sakkari, M.; Kassab, T.; Han, Y.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M.J. Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules. Sens. Actuators B 2006, 118, 163–170. [Google Scholar] [CrossRef]
- Poghossian, A.; Abouzar, M.H.; Amberger, F.; Mayer, D.; Han, Y.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M.J. Field-effect sensors with charged macromolecules: Characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosens. Bioelectron. 2007, 22, 2100–2107. [Google Scholar] [CrossRef]
- Schöning, M.J.; Abouzar, M.H.; Poghossian, A. pH and ion sensitivity of a field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with polyelectrolyte multilayers. J. Solid State Electrochem. 2009, 13, 115–122. [Google Scholar] [CrossRef]
- Abouzar, M.H.; Poghossian, A.; Razavi, A.; Williams, O.A.; Bijnens, N.; Wagner, P.; Schöning, M.J. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing. Biosens. Bioelectron. 2009, 24, 1298–1304. [Google Scholar] [CrossRef]
- Poghossian, A.; Weil, M.; Cherstvy, A.G.; Schöning, M.J. Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices. Anal. Bioanal. Chem. 2013, 405, 6425–6436. [Google Scholar] [CrossRef] [PubMed]
- Janata, J. Graphene bio-field-effect transistor myth. ECS Solid State Lett. 2012, 1, M29–M31. [Google Scholar] [CrossRef]
pH-Sensitive Material | Deposition Method | pH Sensitivity, mV/pH | pH Range | Drift, mV/h | Hysteresis, mV | Reference |
---|---|---|---|---|---|---|
SiO2 | LPCVD | 41.5 | 2–10 | 19.6 | 19.4 | [31] |
SiO2 structured | LPCVD | 52 | 2–10 | 1 | 11 | [31] |
SiO2 textured with SiO2 particles | TO of Si | 43–54 | 4–10 | 16–40 | 5–6 | [9] |
SiO2 | TO of Si | 35–38 | 3–9 | - | - | [30] |
Si3N4 | LPCVD | 50 | 2–12 | 6 | - | [57] |
Si3N4 | LPCVD | 50 | 3–12 | 4 | 21 | [32] |
Al2O3 | ALD | 55 | 3–12 | 5.5 | - | [33] |
Al2O3 | ALD | 54.5 | 3–12 | 2 | 14 | [32] |
Al2O3 | PLD | 56 | 2–12 | <1 | 3 | [34] |
Ta2O5 | TO of Ta | 57 ± 1.5 | 3–10 | 0.5 | 4 | [29] |
Ta2O5 | TO of Ta | 56 | 1–10 | - | 5 | [35] |
ZrO2 | TO of Zr | 50.6 | 2–10 | - | - | [37] |
HfO2 | ALD | 59.6 | 2–12 | 1 | 4.3 | [41] |
HfO2 | RFS | 51 | 2–10 | 1 | 25 | [40] |
HfO2 | RFS | 58.3 | 2–12 | 0.65 | 1.7 | [39] |
CeO2 | RFS | 58.8 | 2–12 | 1 | 6 | [42] |
Gd2O3 | TO of Gd | 53 | 2–10 | 5.4 | - | [43] |
Gd2O3 | RFS | 55 | 2–10 | 1.2 | - | [44] |
Ti-doped Gd2O3 | RFS | 55 | 2–12 | 1.4 | 3.6 | [45] |
Lu2O3 | RFS | 56 | 2–12 | 1.3 | 2.2 | [46] |
Nd2O3 | RFS | 56 | 2–12 | 1.3 | 4.7 | [47] |
Yb2O3 | RFS | 55.5 | 2–12 | 1.5 | 3.8 | [48] |
BST | sputtering | 48–56 | 2–10 | - | - | [54] |
BST | PLD | 57.4 | 3–11 | - | 2 | [56] |
NCD | MPECVD | 54–57 | 4–11 | - | - | [58] |
Dy2TiO5 | co-sputtering Dy/Ti | 57.6 | 2–12 | 0.4 | 0.2 | [49] |
Er2TiO5 | co-sputtering Er/Ti | 58.4 | 2–12 | 1.2 | 4.6 | [50] |
PbTiO3 | sol-gel | 56–59 | 2–12 | [51] | ||
YTixOy | sol-gel | 58.5 | 2–12 | 0.1 | 2.6 | [52] |
Tm2Ti2O7 | co-sputtering Tm/Ti | 59.4 | 2–12 | 2.4 | 0.6 | [53] |
Analyte/Enzyme | pH Layer | Immobilization | Sensitivity | Detection Range, mM | LDL, µM | Ref. |
---|---|---|---|---|---|---|
acetoin/AR | Ta2O5 | crosslinking | 65 mV/dec | 0.01–0.1 | - | [80] |
creatinine/creatinine deaminase | Dy2TiO5 | covalent on magnetic bead | 22–29 mV/dec | 0.01–10 | - | [81] |
creatinine/creatinine deaminase | Dy2TiO5 | entrapment in alginate bead | 105 mV/dec | 0.01–10 | 1 | [82] |
creatinine/creatinine deaminase | Tm2Ti2O7 | entrapment in alginate gel | 82 mV/dec | 0.01–15 | - | [83] |
cyanide/cyanidase | Ta2O5 | covalent | 4 mV/dec | 0.001–10 | - | [84] |
formaldehyde/FDH | Si3N4 | entrapment | 31 mV/dec | 0.01–20 | 10 | [85] |
glucose/GOx | Dy2TiO5 | entrapment in alginate bead | 12 mV/mM | 2–8 | 62 | [82] |
glucose/GOx | Ta2O5 | LbL, PAH/ZnO/CNT/GOx | 12 mV/dec | 0.5–20 | - | [92] |
glucose/GOx | ZnO | crosslinking | 3.1 V/mM | 2–7 | - | [89] |
glucose/GOx | Tm2Ti2O7 | encapsulation within hydrogel | 14.7 mV/mM | 2–8 | - | [53] |
glucose/GOx | Mg/ZnO | crosslinking | 10.7 mV/mM | 2–7 | - | [95] |
paraoxon/OPH | Ta2O5 | crosslinking | ~1 mV/µM | 0.002–0.05 | 2 | [96] |
penicillin/PEN | Ta2O5 | LbL, PAMAM/CNT/PEN | 100 mV/dec | 0.025–25 | 25 | [94] |
penicillin/PEN | NCD | adsorptive | 85 mV/dec | 0.005–2.5 | 5 | [58] |
penicillin/PEN | SiO2 | LbL, PAH/PENe | 100 mV//dec | 0.025–10 | 20 | [101] |
Penicillin/PEN | Ta2O5 | adsorptive | 46 mV/dec | 0.05–10 | 50 | [102] |
penicillin/PEN | Ta2O5 | TMV nanocarrier | 92 mV/dec | 0.1–10 | 50 | [103] |
urea/urease | SiO2 | LbL, Fe3O4-NP/PE/urease | 32 mV/dec | 0.1–100 | 100 | [104] |
urea/urease | Mg/ZnO | crosslinking | 8.4 mV/mM | 2–32 | - | [95] |
urea/urease | Dy2TiO5 | entrapment in alginate gel | 118 mV/dec | 1–32 | - | [105] |
urea/urease | Ta2O5 | LbL PAMAM/CNT/urease/CNT | 33 mV/dec | 0.1–100 | - | [106] |
urea/urease | HfO2 | crosslinking | 117 mV/dec | 0.1–10 | - | [107] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poghossian, A.; Schöning, M.J. Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report. Sensors 2020, 20, 5639. https://doi.org/10.3390/s20195639
Poghossian A, Schöning MJ. Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report. Sensors. 2020; 20(19):5639. https://doi.org/10.3390/s20195639
Chicago/Turabian StylePoghossian, Arshak, and Michael J. Schöning. 2020. "Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report" Sensors 20, no. 19: 5639. https://doi.org/10.3390/s20195639