Spanish Costaleros’ Physical Activity and Their Quality of Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Design
2.2. Instruments
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Physical Activity Intensity
4.2. Quality of Life
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lafuente, V.; Devesa, M.; Sanz, J.A. Economic impact of a religious and tourist event: A Holy Week celebration. Tour. Econ. 2017, 23, 1255–1274. [Google Scholar] [CrossRef]
- Altemir, M. Fisioterapia: Clave de prevención en el mundo del costalero. In Proceedings of the I Congreso Nacional del Costalero. Las Ciencias de la Salud y de la Actividad Física como Fundamento; Diputación de Córdoba: Córdoba, Spain, 2003. [Google Scholar]
- Cruz-Fernández, J.; Pérez-Castilla, P.; Blasco-Huelva, P.; Álvarez-Zarallo, J. Vigilancia de la Salud en los Costaleros. 2001. Available online: www.lapasion.org/lavigilancia (accessed on 26 June 2020).
- Hinojosa, J.M. El Esfuerzo Físico de los Hombres de Trono. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, 2015. [Google Scholar]
- Cañizares, J.M. Algunas reflexiones sobre la preparación física aplicada a las personas que llevan costal. In Proceedings of the I Congreso Nacional del Costalero. Las Ciencias de la Salud y de la Actividad Física como Fundamento; Diputación de Córdoba: Córdoba, Spain, 2003. [Google Scholar]
- Robles-Romero, J.M.; Fernández-Ozcorta, E.J.; Gavala-González, J.; Romero-Martín, M.; Gómez-Salgado, J.; Ruiz-Frutos, C. Anthropometric Measures as Predictive Indicators of Metabolic Risk in a Population of “Holy Week Costaleros”. Int. J. Environ. Res. Public Health 2019, 16, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavallee, M.E.; Balam, T. An Overview of Strength Training Injuries: Acute and Chronic. Curr. Sports Med. Rep. 2010, 9, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.E.; Lavallee, M.E. Weightlifting. In Sports-related Fractures, Dislocations and Trauma; Khodaee, M., Waterbrook, A., Gammons, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Fares, M.Y.; Fares, J.; Salhab, H.A.; Khachfe, H.H.; Bdeir, A.; Fares, Y. Low Back Pain among Weightlifting Adolescents and Young Adults. Cureus 2020, 12, e9127. [Google Scholar] [CrossRef]
- Kipp, K.; Suchomel, T.J.; Comfort, P. Correlational Analysis between Joint-level Kinetics of Countermovement Jumps and Weightlifting Derivatives. J. Sports Sci. Med. 2019, 18, 663–668. [Google Scholar]
- Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the Force-Velocity Profile of Athletes Using Weightlifting Derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- Aasa, U.; Bengtsson, V.; Berglund, L.; Öhberg, F. Variability of lumbar spinal alignment among power- and weightlifters during the deadlift and barbell back squat. Sports Biomech. 2019, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Janicijevic, D.; Knezevic, O.M.; Mirkov, D.M.; Pérez-Castilla, A.; Petrovic, M.; Samozino, P.; García-Ramos, A. The force–velocity relationship obtained during the squat jump exercise is meaningfully influenced by the initial knee angle. Sports Biomech. 2020. [Google Scholar] [CrossRef]
- Powell, K.E.; King, A.C.; Buchner, D.M.; Campbell, W.W.; DiPietro, L.; Erickson, K.I.; Hillman, C.H.; Jakicic, J.M.; Janz, K.F.; Katzmarzyk, P.T.; et al. The Scientific Foundation for the Physical Activity. J. Phys. Act. Health 2019, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Emery, C.A.; Pasanen, K. Current trends in sport injury prevention. Best Prac. Res. Clin. Rheumatol. 2019, 33, 3–15. [Google Scholar] [CrossRef]
- Altemir, M. Informe Resultados Generales del Centro de Atención al Costalero 2019. CEACO. 2019. Available online: https://costalero.com/ceaco-2019-granada (accessed on 25 June 2020).
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 305, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36) (I). Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; Prieto, L.; Anto, J.M. La versión española del SF-36 Health Survey (Cuestionario de Salud SF-36): Un instrumento para la medida de los resultados clínicos. Med. Clin. 1995, 104, 771–776. [Google Scholar]
- Allahbakhshi, H.; Conrow, L.; Naimi, B.; Weibel, R. Using Accelerometer and GPS Data for Real-Life Physical Activity Type Detection. Sensors 2020, 20, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biagetti, G.; Crippa, P.; Falaschetti, L.; Luzzi, S.; Turchetti, C. Recognition of Daily Human Activities Using Accelerometer and sEMG Signals. In Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies; Czarnowski, I., Howlett, R., Jain, L., Eds.; Springer: Cham, Switerland, 2019; Volume 143. [Google Scholar] [CrossRef]
- Sharkey, T.; Whatnall, M.C.; Hutchesson, M.J.; Haslam, R.L.; Bezzina, A.; Collins, C.E.; Ashton, L.M. Effectiveness of gender-targeted versus gender-neutral interventions aimed at improving dietary intake, physical activity and/or overweight/obesity in young adults (aged 17–35 years): A systematic review and meta-analysis. Nutr. J. 2020, 19. [Google Scholar] [CrossRef]
- Lesser, I.A.; Nienhuis, C.P. The Impact of COVID-19 on Physical Activity Behavior and Well-Being of Canadians. Inter. J. Environ. Res. Public Health 2020, 17, 3899. [Google Scholar] [CrossRef] [PubMed]
- Poulimeneas, D.; Maraki, M.I.; Karfopoulou, E.; Koutras, Y.; Chrysostomou, S.; Anastasiou, C.A.; Kavouras, S.A.; Yannakoulia, M. Sex-specific physical activity patterns differentiate weight loss maintainers from regainers: The MedWeight study. J. Phys. Act. Health 2020, 17, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.O.; et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Aguirre, I.M.; Mercado-Medina, E.L.; Chavarro-Hernandez, Z.D.; Dominguez-Jimenez, J.A.; Contreras-Ortiz, S.H. A wearable system for biosignal monitoring in weightlifting. Sports Eng. 2016, 20, 73–80. [Google Scholar] [CrossRef]
- Radenković, L.; Nešić, L. The physics of powerlifting. Eur. J. Phys. 2018, 39, 034002. [Google Scholar] [CrossRef]
- Strömbäck, E.; Aasa, U.; Gilenstam, K.; Berglund, L. Prevalence and Consequences of Injuries in Powerlifting: A Cross-sectional Study. Orthop. J. Sports Med. 2018, 6, 232596711877101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadomski, S.J.; Ratamess, N.A.; Cutrufello, P.T. Range of Motion Adaptations in Powerlifters. J. Strength Cond. Res. 2018, 32, 3020–3028. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.; Larumbe-Zabala, E.; Gosss-Sampson, M.; Colpus, M.; Triplett, N.T.; Naclerio, F. Perceptual, Mechanical, and Electromyographic Responses to Different Relative Loads in the Parallel Squat. J. Strength Cond. Res. 2019, 33, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Caruso, J.F.; Olson, N.M.; Taylor, S.T.; McLagan, J.R.; Shepherd, C.M.; Borgsmiller, J.A.; Mason, M.L.; Riner, R.R.; Gilliland, L.; Grisewold, S. Front Squat Data Reproducibility Collected With a Triple-Axis Accelerometer. J. Strength Cond. Res. 2012, 26, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Colley, R.C.; Butler, G.; Garriguet, D.; Prince, S.A.; Roberts, K.C. Comparison of self-reported and accelerometer-measured physical activity in Canadian adults. Health Rep. 2018, 29, 3–15. [Google Scholar] [PubMed]
- Rowlands, A.V.; Mirkes, E.M.; Yates, T.E.; Clemes, S.; Davies, M.J.; Khunti, K.; Edwardson, C.L. Accelerometer-assessed Physical Activity in Epidemiology: Are Monitors Equivalent? Med. Sci. Sports Exer. 2018, 50, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra-Díaz, M.J.; Evangelio, C.; Pérez-Torralba, A.; González-Víllora, S. What do we play? Influence of the Small-Sided and Conditioned Games to improve the students’ physiological and physical performance. ESHPA Educ. Sport Health Phys. Act. 2020, 4, 162–180. [Google Scholar] [CrossRef]
- Rangel-García, J.A.; Loza-Herbella, J.; Colás-Chacartegui, R.; Lezama-Tagliavia, G. Effect of 16 weeks of multicomponent physical exercise for the prevention of fragility and the risk of falls in people over 65. ESHPA Educ. Sport Health Phys. Act. 2020, 4, 181–197. [Google Scholar] [CrossRef]
- Blom, E.E.; Aadland, E.; Skrove, G.K.; Solbraa, A.K.; Oldervoll, L.M. Health-related quality of life and physical activity level after a behavior change program at Norwegian healthy life centers: A 15-month follow-up. Qual. Life Res. 2020. [Google Scholar] [CrossRef]
- Wyke, S.; Bunn, C.; Andersen, E.; Silva, M.N.; van Nassau, F.; McSkimming, P.; Kolovos, S.; Gill, J.M.; Gray, C.M.; Hunt, K.; et al. The effect of a programme to improve men’s sedentary time and physical activity: The European Fans in Training (EuroFIT) randomised controlled trial. PLoS Med. 2019, 16, e1002772. [Google Scholar] [CrossRef] [Green Version]
- Tarp, J.; Hansen, B.H.; Fagerland, M.W.; Steene-Johannessen, J.; Anderssen, S.A.; Ekelund, U. Accelerometer-measured physical activity and sedentary time in a cohort of US adults followed for up to 13 years: The influence of removing early follow-up on associations with mortality. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Soidán, J.L.; Arufe-Giráldez, V.; Cachón-Zagalaz, J.; Lara-Sánchez, A.J. Does pilates exercise increase physical activity, quality of life, latency, and sleep quantity in middle-aged people? Percept. Motor Skills 2014, 119, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Liu, W.; Xiong, S.; Ken, L.; Zeng, N.; Peng, Q.; Yan, X.; Wang, J.; Wu, Y.; Lei, M.; et al. Associations between Self-Determined Motivation, Accelerometer-Determined Physical Activity, and Quality of Life in Chinese College Students. Int. J. Environ. Res. Public Health 2019, 16, 2941. [Google Scholar] [CrossRef] [Green Version]
- Blom, E.E.; Aadland, E.; Skrove, G.K.; Solbraa, A.K.; Oldervoll, L.M. Health-related quality of life and intensity-specific physical activity in highrisk adults attending a behavior change service within primary care. PLoS ONE 2019, 14, e0226613. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Verma, V.K.; Lee, M.-Y.; Lin, H.-C.; Lai, C.-S. Prediction of 30-Day Readmission for COPD Patients Using Accelerometer-Based Activity Monitoring. Sensors 2020, 20, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, G.A.; Taylor, B.A.; Thompson, P.D.; White, C.M.; Pescatello, L.S. Physical activity intensity and subjective well-being in healthy adults. J. Heatlh Psychol. 2017, 24, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
Years Sex | Sample Size | Sedentary PA | Light PA | Moderate PA | Vigorous PA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% C.I. | 95% C.I. | 95% C.I. | 95% C.I. | ||||||||||
M | from | to | M | from | to | M | from | to | M | from | to | ||
18–61 | 1057 | 10.8 | 8.6 | 12.1 | 15.7 | 13.1 | 17.4 | 31.3 | 29.7 | 33.5 | 5.8 | 3.6 | 7.4 |
Males | 930 | 11.2 * | 8.9 | 13.6 | 15.6 | 13.2 | 17.1 | 31.1 | 29.3 | 33.1 | 6.4 * | 4.2 | 8.8 |
Females | 127 | 9.7 | 7.5 | 11.3 | 15.1 | 12.7 | 17.6 | 29.7 | 27.4 | 31.6 | 5.2 | 3.1 | 7.4 |
18–35 | 744 | 8.8 | 6.5 | 10.3 | 16.3 | 14.1 | 18.2 | 20.8 | 18.3 | 22.8 | 8.6 * | 6.6 | 10.9 |
Males | 654 | 9.1 | 7.3 | 11.2 | 16.5 | 14.6 | 19.1 | 29.5 * | 26.6 | 31.4 | 8.8 | 6.9 | 11.1 |
Females | 90 | 8.4 | 6.7 | 10.7 | 16.1 | 13.9 | 18.7 | 21.2 | 19.8 | 23.4 | 8.4 | 6.7 | 10.5 |
36–61 | 313 | 9.1 | 7.4 | 11.5 | 15.2 | 13.7 | 17.8 | 19.3 | 17.4 | 21.8 | 4.1 * | 2.8 | 6.2 |
Males | 276 | 9.8 | 7.1 | 11.8 | 14.9 | 12.5 | 16.4 | 19.9 | 17.2 | 22.1 | 4.3 | 3.1 | 6.4 |
Females | 27 | 8.2 | 6.1 | 10.3 | 15.4 | 13.2 | 17.3 | 18.2 | 16.5 | 20.3 | 3.9 | 1.8 | 5.2 |
Variable | 18–61 | 18–35 | 36–61 | Levene Test | Sig. (Bilateral) | ES (d) | 95% CI | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | S.D. | M | S.D. | M | S.D. | F | Sig. | ||||
GH | 14.88 | 1.79 | 14.83 | 1.77 | 14.98 | 1.81 | 1.52 | 0.217 | 0.061 | 0.055 | [14.70; 14.98] |
SF | 6.92 | 0.90 | 6.93 | 0.90 | 6.91 | 0.90 | 0.12 | 0.725 | 0.790 | 0.028 | [6.81; 7.01] |
V | 13.71 | 2.03 | 13.78 | 2.02 | 13.55 | 2.06 | 2.79 | 0.005 | 0.173 | 0.063 | [13.32; 13.92] |
MH | 19.52 | 1.89 | 19.50 | 1.91 | 19.57 | 1.84 | 0.26 | 0.605 | 0.251 | 0.058 | [19.36; 19.77] |
BP | 3.83 | 1.97 | 3.70 | 2.01 | 3.88 | 1.87 | 1.83 | 0.176 | 0.020 * | 0.061 | [3.49; 4.03] |
RE | 5.60 | 0.89 | 5.59 | 0.90 | 5.63 | 0.89 | 0.44 | 0.507 | 0.353 | 0.028 | [5.54; 5.73] |
RP | 7.63 | 1.03 | 7.75 | 1.10 | 7.15 | 0.83 | 6.46 | 0.011 | 0.000 * | 0.032 | [7.49; 7.84] |
PF | 29.62 | 1.02 | 29.67 | 1.10 | 29.60 | 0.81 | 0.90 | 0.042 | 0.031 * | 0.032 | [29.52; 29.76] |
GH | SF | V | MH | BP | RE | RP | PF | Injury | SPA | LPA | MPA | VPA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GH | - | 0.014 | 0.166 ** | 0.103 ** | 0.052 | −0.066 * | −0.065 * | −0.151 ** | −0.817 ** | 0.023 | −0.237 ** | 0.612 ** | 0.685 ** |
SF | - | 0.109 ** | 0.055 | 0.030 | 0.033 | −0.057 | −0.028 | −0.058 | 0.021 | 0.142 ** | 0.213 ** | 0.498 ** | |
V | - | 0.104 ** | −0.013 | −0.129 ** | −0.104 ** | −0.071* | −0.765 ** | 0.251 ** | 0.102 ** | 0.437 ** | 0.367 ** | ||
MH | - | −0.160 ** | 0.338 ** | 0.145 ** | 0.115 ** | 0.681 ** | 0.054 | 0.098 * | 0.269 ** | 0.235 ** | |||
BP | - | −0.265 ** | −0.661 ** | −0.346 ** | 0.866 ** | 0.354 ** | 0.471 ** | 0.532 ** | −0.784 ** | ||||
RE | - | 0.303 ** | 0.263 ** | −0.042 | 0.036 | 0.365 ** | 0.258 ** | 0.261 ** | |||||
RP | - | 0.475 ** | −0.598 ** | 0.050 | 0.089 * | 0.217 ** | 0.116 ** | ||||||
PF | - | −0.532 ** | 0.487 ** | 0.545 ** | 0.463 ** | 0.129 ** | |||||||
Injury | - | 0.647 ** | 0.416 ** | −0.714 ** | −0.756 ** | ||||||||
SPA | - | 0.124 ** | 0.287 ** | 0.251 ** | |||||||||
LPA | - | 0.314 ** | 0.047 | ||||||||||
MPA | - | 0.259 ** | |||||||||||
VPA | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubago-Jiménez, J.L.; Zurita-Ortega, F.; Puertas-Molero, P.; González-Valero, G. Spanish Costaleros’ Physical Activity and Their Quality of Life. Sensors 2020, 20, 5641. https://doi.org/10.3390/s20195641
Ubago-Jiménez JL, Zurita-Ortega F, Puertas-Molero P, González-Valero G. Spanish Costaleros’ Physical Activity and Their Quality of Life. Sensors. 2020; 20(19):5641. https://doi.org/10.3390/s20195641
Chicago/Turabian StyleUbago-Jiménez, José Luis, Félix Zurita-Ortega, Pilar Puertas-Molero, and Gabriel González-Valero. 2020. "Spanish Costaleros’ Physical Activity and Their Quality of Life" Sensors 20, no. 19: 5641. https://doi.org/10.3390/s20195641
APA StyleUbago-Jiménez, J. L., Zurita-Ortega, F., Puertas-Molero, P., & González-Valero, G. (2020). Spanish Costaleros’ Physical Activity and Their Quality of Life. Sensors, 20(19), 5641. https://doi.org/10.3390/s20195641