Label-Free Oligonucleotide-Based SPR Biosensor for the Detection of the Gene Mutation Causing Prothrombin-Related Thrombophilia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Materials and Reagents
2.3. Preparation of the Biosensing Surface
2.4. Hybridization Assays
2.5. Data Processing Obtained by SPR
3. Results and Discussion
3.1. SPR Biosensor Construction
3.2. Hybridization and Regeneration Processes
3.3. Analytical Performance of MT and NT Biosensors
3.4. Interchip Reproducibility Study
3.5. Selectivity Assays of Complementary versus Noncomplementary Strands
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monagle, P.; Adams, M.; Mahoney, M.; Ali, K.; Barnard, D.; Bernstein, M.; Brisson, L.; David, M.; Desai, S.; Scully, M.F.; et al. Outcome of pediatric thromboembolic disease: A report from the Canadian childhood thrombophilia registry. Pediatr. Res. 2000, 47, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Merli, G.J.; Tzanis, G.L.; Menajovsky, L.B. Prophylaxis for Deep Vein Thrombosis and Pulmonary Embolism in the Surgical Patient. In Medical Management of the Surgical Patient; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 91–115. ISBN 9781416023852. [Google Scholar]
- Funai, E.F. Inherited thrombophilia and preeclampsia: Is the evidence beginning to congeal? Am. J. Obstet. Gynecol. 2008, 200, 121–122. [Google Scholar] [CrossRef]
- Rodger, M.A.; Paidas, M.; Claire, M.; Middeldorp, S.; Kahn, S.; Martinelli, I.; Hague, W.; Rosene Montella, K.; Greer, I. Inherited Thrombophilia and Pregnancy Complications Revisited. Obstet. Gynecol. 2008, 112, 320–324. [Google Scholar] [CrossRef]
- Poort, S.R.; Rosendaal, F.R.; Reitsma, P.H.; Bertina, R.M. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996, 88, 3698–3703. [Google Scholar] [CrossRef] [Green Version]
- Koenderman, J.S.; Reitsma, P.H. Inherited Thrombophilia: Past, Present, and Future Research. In Thrombophilia; InTech: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Prothrombin-Related Thrombophilia-GeneReviews®-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1148/?report=reader (accessed on 26 April 2020).
- Wahed, A.; Dasgupta, A. Thrombophilias and Their Detection. Hematol. Coagul. 2015, 263–275. [Google Scholar] [CrossRef]
- Cooper, P.C.; Cooper, S.M.; Smith, J.M.; Kitchen, S.; Makris, M. Evaluation of the Roche LightCycler: A simple and rapid method for direct detection of factor V Leiden and prothrombin G20210A genotypes from blood samples without the need for DNA extraction. Blood Coagul. Fibrinolysis 2003, 14, 499–503. [Google Scholar] [CrossRef]
- Beauchamp, N.J.; Daly, M.E.; Cooper, P.C.; Preston, F.E.; Peake, I.R. Rapid two-stage PCR for detecting factor V G1691A mutation. Lancet 1994, 344, 694–695. [Google Scholar] [CrossRef]
- Sikarwar, B.; Singh, V.V.; Sharma, P.K.; Kumar, A.; Thavaselvam, D.; Boopathi, M.; Singh, B.; Jaiswal, Y.K. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens. Bioelectron. 2017, 87, 964–969. [Google Scholar] [CrossRef]
- Piliarik, M.; Vaisocherová, H.; Homola, J. Surface plasmon resonance biosensing. Methods Mol. Biol. 2009, 503, 65–88. [Google Scholar]
- Breveglieri, G.; D’Aversa, E.; Gallo, T.E.; Pellegatti, P.; Guerra, G.; Cosenza, L.C.; Finotti, A.; Gambari, R.; Borgatti, M. A novel and efficient protocol for Surface Plasmon Resonance based detection of four Β-thalassemia point mutations in blood samples and salivary swabs. Sens. Actuators B Chem. 2018, 260, 710–718. [Google Scholar] [CrossRef]
- Peláez, E.C.; Estevez, M.C.; Domínguez, R.; Sousa, C.; Cebolla, A.; Lechuga, L.M. A compact SPR biosensor device for the rapid and efficient monitoring of gluten-free diet directly in human urine. Anal. Bioanal. Chem. 2020, 412, 6407–6417. [Google Scholar] [CrossRef]
- Špringer, T.; Homola, J. Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Anal. Bioanal. Chem. 2012, 404, 2869–2875. [Google Scholar] [CrossRef]
- Sina, A.A.I.; Vaidyanathan, R.; Wuethrich, A.; Carrascosa, L.G.; Trau, M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal. Bioanal. Chem. 2019, 411, 1311–1318. [Google Scholar] [CrossRef] [Green Version]
- Wikström, A.; Deinum, J. Probing the interaction of coagulation factors with phospholipid vesicle surfaces by surface plasma resonance. Anal. Biochem. 2007, 362, 98–107. [Google Scholar] [CrossRef]
- Hansson, K.M.; Johansen, K.; Wetterö, J.; Klenkar, G.; Benesch, J.; Lundström, I.; Lindahl, T.L.; Tengvall, P. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions. Biosens. Bioelectron. 2007, 23, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Hansson, K.M.; Vikinge, T.P.; Rånby, M.; Tengvall, P.; Lundström, I.; Johansen, K.; Lindahl, T.L. Surface plasmon resonance (SPR) analysis of coagulation in whole blood with application in prothrombin time assay. Biosens. Bioelectron. 1999, 14, 671–682. [Google Scholar] [CrossRef]
- Vikinge, T.P.; Hansson, K.M.; Benesch, J.; Johansen, K.; Ranby, M.; Lindahl, T.L.; Lundstroem, I.; Tengvall, P. Blood plasma coagulation studied by surface plasmon resonance. In Proceedings of the Biomedical Sensors, Fibers, and Optical Delivery Systems, Stockholm, Sweden, 15 January 1998. [Google Scholar]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Tsouti, V.; Boutopoulos, C.; Zergioti, I.; Chatzandroulis, S. Capacitive microsystems for biological sensing. Biosens. Bioelectron. 2011, 27, 1–11. [Google Scholar] [CrossRef]
- He, L.; Musick, M.D.; Nicewarner, S.R.; Salinas, F.G.; Benkovic, S.J.; Natan, M.J.; Keating, C.D. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 2000, 122, 9071–9077. [Google Scholar] [CrossRef]
- Granqvist, N.; Hanning, A.; Eng, L.; Tuppurainen, J.; Viitala, T. Label-enhanced surface plasmon resonance: A new concept for improved performance in optical biosensor analysis. Sensors 2013, 13, 15348–15363. [Google Scholar] [CrossRef]
- Cooper, M.A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 515–528. [Google Scholar] [CrossRef]
- Altintas, Z.; Uludag, Y.; Gurbuz, Y.; Tothill, I. Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Anal. Chim. Acta 2012, 712, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Jung, I.Y.; Lee, E.H.; Suh, A.Y.; Lee, S.J.; Lee, H. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection. Anal. Bioanal. Chem. 2016, 408, 2383–2406. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Li, S.F.Y.; Bao, Q.; Xu, Q. A label-free lead(II) ion sensor based on surface plasmon resonance and DNAzyme-gold nanoparticle conjugates. Anal. Bioanal. Chem. 2020, 412, 7525–7533. [Google Scholar] [CrossRef]
- Kavita, V. DNA Biosensors-A Review. J. Bioeng. Biomed. Sci. 2017, 7, 2. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, G.B.; Ryu, S.H.; Kim, H.; Yoo, H.H.; Yoon, M.Y.; Lee, J.W.; Gye, M.C.; Kim, Y.P. Fluorescing aptamer-gold nanosensors for enhanced sensitivity to bisphenol A. Sens. Actuators B Chem. 2018, 260, 371–379. [Google Scholar] [CrossRef]
- Jarczewska, M.; Kierzkowska, E.; Ziółkowski, R.; Górski, Ł.; Malinowska, E. Electrochemical oligonucleotide-based biosensor for the determination of lead ion. Bioelectrochemistry 2015, 101, 35–41. [Google Scholar] [CrossRef]
- Šponer, J.; Hobza, P. Molecular interactions of nucleic acid bases. A review of quantum-chemical studies. Collect. Czechoslov. Chem. Commun. 2003, 68, 2231–2282. [Google Scholar]
- Šponer, J.; Leszczynski, J.; Hobza, P. Hydrogen bonding and stacking of DNA bases: A review of quantum-chemical ab initio studies. J. Biomol. Struct. Dyn. 1996, 14, 117–135. [Google Scholar] [CrossRef]
- Zhang, T.B.; Zhang, C.L.; Dong, Z.L.; Guan, Y.F. Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope. Sci. Rep. 2015, 5, 9143. [Google Scholar] [CrossRef] [Green Version]
- Ollis, D.L.; White, S.W. Structural Basis of Protein–Nucleic Acid Interactions. Chem. Rev. 1987, 87, 981–995. [Google Scholar] [CrossRef]
- Luger, K.; Phillips, S.E. Current Opinion in Structural Biology; Howard Hughes Medical Institute: Chevy Chase, MD, USA, 2010; pp. 70–72. [Google Scholar]
- Matsishin, M.J.; Ushenin, I.V.; Rachkov, A.E.; Solatkin, A.P. SPR Detection and Discrimination of the Oligonucleotides Related to the Normal and the Hybrid bcr-abl Genes by Two Stringency Control Strategies. Nanoscale Res. Lett. 2016, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Thiel, A.J.; Frutos, A.G.; Jordan, C.E.; Corn, R.M.; Smith, L.M. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal. Chem. 1997, 69, 4948–4956. [Google Scholar] [CrossRef]
- Homola, J.; Piliarik, M. Surface Plasmon Resonance (SPR) Sensors; Springer Series on Chemical Sensors and Biosensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 45–67. [Google Scholar] [CrossRef]
- Creager, S.E.; Steiger, C.M. Conformational Rigidity in a Self-Assembled Monolayer of 4-Mercaptobenzoic Acid on Gold. Langmuir 1995, 11, 1852–1854. [Google Scholar] [CrossRef]
- Pensa, E.; Rubert, A.A.; Benitez, G.; Carro, P.; Orive, A.G.; Creus, A.H.; Salvarezza, R.C.; Vericat, C. Are 4-mercaptobenzoic acid self assembled monolayers on Au(111) a suitable system to test adatom models? J. Phys. Chem. C 2012, 116, 25765–25771. [Google Scholar] [CrossRef]
- Herne, T.M.; Tarlov, M.J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. [Google Scholar] [CrossRef]
- Altintas, Z.; Tothill, I.E. DNA-based biosensor platforms for the detection of TP53 mutation. Sens. Actuators B Chem. 2012, 169, 188–194. [Google Scholar] [CrossRef]
- Vainrub, A.; Pettitt, B.M. Coulomb blockage of hybridization in two-dimensional DNA arrays. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2002, 66, 4. [Google Scholar] [CrossRef]
- Qiao, W.; Chiang, H.C.; Xie, H.; Levicky, R. Surface vs. solution hybridization: Effects of salt, temperature, and probe type. Chem. Commun. 2015, 51, 17245–17248. [Google Scholar] [CrossRef] [Green Version]
- Gronewold, T.M.A.; Glass, S.; Quandt, E.; Famulok, M. Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens. Bioelectron. 2005, 20, 2044–2052. [Google Scholar] [CrossRef]
- Jalit, Y.; Gutierrez, F.A.; Dubacheva, G.; Goyer, C.; Coche-Guerente, L.; Defrancq, E.; Labbé, P.; Rivas, G.A.; Rodríguez, M.C. Characterization of a modified gold platform for the development of a label-free anti-thrombin aptasensor. Biosens. Bioelectron. 2013, 41, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, Y.; Francis, T.J.; Blair, D.A.D.; Walsh, R.; Derosa, M.C.; Albert, J. In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal. Chem. 2011, 83, 7027–7034. [Google Scholar] [CrossRef]
- Milkani, E.; Morais, S.; Lambert, C.R.; McGimpsey, W.G. Detection of oligonucleotide systematic mismatches with a surface plasmon resonance sensor. Biosens. Bioelectron. 2010, 25, 1217–1220. [Google Scholar] [CrossRef]
- Cooper, P.; Rezende, S. An overview of methods for detection of factor V Leiden and the prothrombin G20210A mutations. Int. J. Lab. Hematol. 2007, 29, 153–162. [Google Scholar] [CrossRef]
Oligonucleotide Type | Code | Sequence |
---|---|---|
Mutated Probe | MT-A | 5’-/NH2(CH2)6/CAT TGA GGC TTG CTG AG-3’ |
Mutated Target | MT-C | 5’-CTC AGC AAG CCT CAA TG-3’ |
Normal Probe | NT-A | 5’-/NH2(CH2)6/CAT TGA GGC TCG CTG AG-3’ |
Normal Target | NT-C | 5’-CTC AGC GAG CCT CAA TG-3’ |
Oligonucleotide Code | Molecular Weight | DNA Bases | GC Content | Tm (50 mM NaCl) | Strongest Folding Tm |
---|---|---|---|---|---|
MT-A | 5340.4 g/mol | 17 | 52.9% | 50.8 °C | 23.2 °C |
MT-C | 5139.4 g/mol | 17 | 52.9% | 50.8 °C | −16.4 °C |
NT-A | 5405.6 g/mol | 17 | 58.8% | 53.2 °C | 24.2 °C |
NT-C | 5155.4 g/mol | 17 | 58.8% | 53.2 °C | 10.6 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierpe, R.; Kogan, M.J.; Bollo, S. Label-Free Oligonucleotide-Based SPR Biosensor for the Detection of the Gene Mutation Causing Prothrombin-Related Thrombophilia. Sensors 2020, 20, 6240. https://doi.org/10.3390/s20216240
Sierpe R, Kogan MJ, Bollo S. Label-Free Oligonucleotide-Based SPR Biosensor for the Detection of the Gene Mutation Causing Prothrombin-Related Thrombophilia. Sensors. 2020; 20(21):6240. https://doi.org/10.3390/s20216240
Chicago/Turabian StyleSierpe, Rodrigo, Marcelo J. Kogan, and Soledad Bollo. 2020. "Label-Free Oligonucleotide-Based SPR Biosensor for the Detection of the Gene Mutation Causing Prothrombin-Related Thrombophilia" Sensors 20, no. 21: 6240. https://doi.org/10.3390/s20216240
APA StyleSierpe, R., Kogan, M. J., & Bollo, S. (2020). Label-Free Oligonucleotide-Based SPR Biosensor for the Detection of the Gene Mutation Causing Prothrombin-Related Thrombophilia. Sensors, 20(21), 6240. https://doi.org/10.3390/s20216240