On the Application of K-User MIMO for 6G Enhanced Mobile Broadband †
Abstract
:1. Introduction
Background and Prior Research on K-User MIMO
2. System Model for Cellular-Based K-User MIMO
2.1. Received Signal at Antenna
2.2. Received Signal after Beamformer for Interference Cancellation
2.3. Received Signal after Beamformer for Desired Signals Separation
2.4. K-User MIMO X Multiple Access Protocol
3. Derivation of Shannon Capacity for K-User MIMO X and Small Cell Geometric Capacity in Rayleigh Fading
3.1. Ideal K-User MIMO X Capacity vs. K Excluding Pilot Overhead
3.2. Ideal K-User MIMO X Capacity vs. K Including Pilot Overhead
3.3. Capacity Results for Small Cell K-User MIMO at K = 3
Incorporation of Channel Estimation Errors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. K-User MIMO Interference Alignment Mathematics for K = 3
Appendix A.1. System of Interference Alignment Equations for Precoder Generation
IA Conditions [17] | |
---|---|
Rx 1 | span() = span() |
span() = span() | |
span() = span() | |
Rx 2 | span() = span() |
span() = span() | |
span() = span() | |
Rx 3 | span() = span() |
span() = span() | |
span() = span() |
Appendix A.2. Obtaining the Beamformer for Interference Cancellation
Appendix A.3. Obtaining the Beamformer for Signal Separation
Appendix A.4. K-User MIMO X Demodulation and Symbol Detection
Appendix B. Proof of Theorem 1
Appendix C. Verification of Capacity Upper Bound
Appendix D. Channel Estimation Theory and Cramér–Rao Lower Bound
References
- Breivold, H.P.; Sandström, K. Internet of Things for Industrial Automation–Challenges and Technical Solutions. In Proceedings of the 2015 IEEE International Conference on Data Science and Data Intensive Systems, Sydney, Australia, 11–13 December 2015; pp. 532–539. [Google Scholar]
- Yaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imran, M.; Guizani, M. Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 2017, 24, 10–16. [Google Scholar] [CrossRef]
- Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A. 5G Backhaul Challenges and Emerging Research Directions: A Survey. IEEE Access 2016, 4, 1743–1766. [Google Scholar] [CrossRef] [Green Version]
- Ishii, H.; Kishiyama, Y.; Takahashi, H. A Novel Architecture for LTE-B: C-plane/U-plane Split and Phantom Cell Concept. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 624–630. [Google Scholar]
- Zheng, K.; Zhao, L.; Mei, J.; Dohler, M.; Xiang, W.; Peng, Y. 10 Gb/s Hetsnets with Millimeter-Wave Communications: Access and Networking-Challenges and Protocols. IEEE Commun. Mag. 2015, 53, 222–231. [Google Scholar] [CrossRef]
- Pi, Z.; Choi, J.; Heath, R. Millimeter-Wave Gigabit Broadband Evolution toward 5G: Fixed Access and Backhaul. IEEE Commun. Mag. 2016, 54, 138–144. [Google Scholar] [CrossRef]
- Hou, X.; Wang, X.; Jiang, H.; Kayama, H. Investigation of Massive MIMO in Dense Small Cell Deployment for 5G. In Proceedings of the Investigation of Massive MIMO in Dense Small Cell Deployment for 5G, Montreal, QC, Canada, 18–21 September 2016; pp. 1–6. [Google Scholar]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Lee, S.R.; Moon, S.H.; Kong, H.B.; Lee, I. Optimal Beamforming Schemes and its Capacity Behavior for Downlink Distributed Antenna Systems. IEEE Trans. Wirel. Commun. 2013, 12, 2578–2587. [Google Scholar] [CrossRef]
- Heath, R.; Wu, T.; Kwon, Y.; Soong, A. multi-user MIMO in Distributed Antenna Systems. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1202–1206. [Google Scholar]
- Talebi, F. A Tutorial on Interference Alignment. Available online: https://wenku.baidu.com/view/6230be1e59eef8c75fbfb353.html (accessed on 5 June 2011).
- Yetis, C.M.; Gou, T.; Jafar, S.A.; Kayran, A.H. On Feasibility of Interference Alignment in MIMO Interference Networks. IEEE Trans. Signal Process. 2010, 58, 4771–4782. [Google Scholar] [CrossRef] [Green Version]
- Cadambe, V.R.; Jafar, S.A. Interference Alignment and Degrees of Freedom of the K-user Interference Channel. IEEE Trans. Inf. Theory 2008, 54, 3425–3441. [Google Scholar] [CrossRef] [Green Version]
- Gomadam, K.; Cadambe, V.R.; Jafar, S.A. Approaching the Capacity of Wireless Networks Through Distributed Interference Alignment. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference, New Orleans, LO, USA, 30 November–4 December 2008; pp. 1–6. [Google Scholar]
- Sudheesh, P.; Magarini, M.; Muthuchidambaranathan, P. Interference Alignment for the K-user MIMO X Network Using Time Division Multiple Access. In Proceedings of the 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore, India, 13–14 August 2016; pp. 123–127. [Google Scholar]
- Liu, W.; Sun, J.X.; Li, J.; Ma, Y. Interference Alignment for MIMO Downlink Multicell Networks. IEEE Trans. Veh. Technol. 2016, 65, 6159–6167. [Google Scholar] [CrossRef]
- Park, S.H.; Ko, Y.C. K-user MIMO X Network System with Perfect Interference Alignment. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–5. [Google Scholar]
- Yerrapragada, A.K.; Kelley, B. Design of K-user massive MIMO networks. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 377–383. [Google Scholar]
- El Ayach, O.; Lozano, A.; Heath, R.W. On the overhead of interference alignment: Training, feedback, and cooperation. IEEE Trans. Wirel. Commun. 2012, 11, 4192–4203. [Google Scholar] [CrossRef]
- Mungara, R.K.; George, G.; Lozano, A. Overhead and spectral efficiency of pilot-assisted interference alignment in time-selective fading channels. IEEE Trans. Wirel. Commun. 2014, 13, 4884–4895. [Google Scholar] [CrossRef] [Green Version]
- Yerrapragada, A.; Kelley, B. An IoT Self Organizing Network for 5G Dense Network Interference Alignment. In Proceedings of the 2017 12th System of Systems Engineering Conference (SoSE), Waikoloa, HI, USA, 18–21 June 2017; pp. 1–6. [Google Scholar]
- Yerrapragada, A.K.; Kelley, B. Very High Throughput Internet of Things Networks with K access points and K devices. In Proceedings of the MILCOM 2019—2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; pp. 640–645. [Google Scholar]
- Marzetta, T.L. Massive MIMO: An introduction. Bell Labs Tech. J. 2015, 20, 11–22. [Google Scholar] [CrossRef]
- Juntti, M. Capacity Limits of MIMO Channels. IEEE J. Sel. Areas Commun. 2003, 21, 684–702. [Google Scholar]
- Medbo, J. Channel models for HIPERLAN/2 in different indoor scenarios. ETSI/BRAN 1998, 3ERI085B, 1–8. [Google Scholar]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G wireless communications: Vision and potential techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3. [Google Scholar]
- Ozdemir, M.K.; Arslan, H. Channel estimation for wireless OFDM systems. IEEE Commun. Surv. Tutor. 2007, 9, 18–48. [Google Scholar] [CrossRef]
- Morelli, M.; Mengali, U. A Comparison of Pilot-Aided Channel Estimation Methods for OFDM Systems. IEEE Trans. Signal Process. 2001, 49, 3065–3073. [Google Scholar] [CrossRef]
Parameter | Description | Size | For |
---|---|---|---|
M | Minimum number of antennas at each access point and mobile device | ||
Number of desired signals at each mobile device | K | 3 | |
Number of interference terms at each mobile device | 6 | ||
Channel matrix between access point j and mobile device i | |||
Precoder vector for signal between access point j and mobile device i | |||
Symbol to be transmitted between access point j and mobile device i | |||
Additive White Gaussian Noise (AWGN) at mobile device i | |||
Matrix of aligned interference column vectors at the mobile device i | |||
Zero forcing beamformer matrix at mobile device i | |||
Matrix of desired column vectors at mobile device i to isolate signal from access point j | |||
Signal Separation beamformer matrix at mobile device i to isolate signal from access point j | |||
Number of recovered copies of each symbol | 1 |
Channel Model | Rayleigh Fading |
---|---|
Channel Scenario | Indoor A [25] |
Cell Radius | 50 m, 100 m, 500 m |
Transmit Power | 16 dBW |
Total Bandwidth | 20 MHz |
FFT Size (N) | 2048 |
Cyclic Prefix () | 512 samples |
Sampling frequency | MHz |
Subcarrier spacing | 15 kHz |
Number of used sub-carriers | 1320 |
Noise Figure | 4 dB |
Thermal Noise Density | dBW/Hz |
Path Loss Exponent | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yerrapragada, A.K.; Kelley, B. On the Application of K-User MIMO for 6G Enhanced Mobile Broadband. Sensors 2020, 20, 6252. https://doi.org/10.3390/s20216252
Yerrapragada AK, Kelley B. On the Application of K-User MIMO for 6G Enhanced Mobile Broadband. Sensors. 2020; 20(21):6252. https://doi.org/10.3390/s20216252
Chicago/Turabian StyleYerrapragada, Anil Kumar, and Brian Kelley. 2020. "On the Application of K-User MIMO for 6G Enhanced Mobile Broadband" Sensors 20, no. 21: 6252. https://doi.org/10.3390/s20216252
APA StyleYerrapragada, A. K., & Kelley, B. (2020). On the Application of K-User MIMO for 6G Enhanced Mobile Broadband. Sensors, 20(21), 6252. https://doi.org/10.3390/s20216252