Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of 1D and 2D Plasmonic Chips
2.2. Sample Preparation
2.3. Microscopic Measurement
3. Results and Discussion
3.1. Resonance Wavelength Indicated by Reflection and Transmission Spectra
3.2. The Fluorescence Spectra and Fluorescence Image of YG
3.3. Fluorophore Dependence on the Enhancement Factors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Liebermann, T.; Knoll, W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. A 2000, 177, 115–130. [Google Scholar] [CrossRef]
- Yu, F.; Yao, D.; Knoll, W. Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen. Anal. Chem. 2003, 75, 2610–2617. [Google Scholar] [CrossRef] [PubMed]
- Wark, A.W.; Lee, H.J.; Corn, R.M. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal. Chem. 2005, 77, 3904–3907. [Google Scholar] [CrossRef] [PubMed]
- Tawa, K.; Kondo, F.; Sasakawa, C.; Nagae, K.; Nakamura, Y.; Nozaki, A.; Kaya, T. Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip. Anal. Chem. 2015, 87, 3871–3876. [Google Scholar] [CrossRef]
- Usukura, E.; Shinohara, S.; Okamoto, K.; Lim, J.; Char, K.; Tamada, K. Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets. Appl. Phys. Lett. 2014, 104, 121906. [Google Scholar] [CrossRef]
- Lee, K.-S.; El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225. [Google Scholar] [CrossRef]
- Yao, J.; Yang, M.; Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178. [Google Scholar] [CrossRef]
- Simon, F.; Julien, B.T.; Pierre, C.; Jean-Francois, M. Surface Plasmon Resonance Imaging-MALDI-TOF Imaging Mass Spectrometry of Thin Tissue Sections. Anal. Chem. 2016, 88, 2072–2079. [Google Scholar]
- Tawa, K.; Yasui, C.; Hosokawa, C.; Aota, H.; Nishii, J. In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy. ACS Appl. Mater. Interfaces 2014, 6, 20010–20015. [Google Scholar] [CrossRef]
- Raether, R. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed.; Springer: Heidelberg, Germany, 1988; pp. 1–133. [Google Scholar]
- Knoll, W. Interfaces and thin films as seen by bound electromagnetic waves. Ann. Rev. Phys. Chem. 1998, 49, 569–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostálek, J.; Kasry, A.; Knoll, W. Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics 2007, 2, 97–106. [Google Scholar] [CrossRef]
- Tawa, K.; Hori, H.; Kintaka, K.; Kiyosue, K.; Tatsu, Y.; Nishii, J. Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Opt. Express 2008, 16, 9781–9790. [Google Scholar] [CrossRef] [PubMed]
- Jinchao, T.; Fei, S.; Junhuizhi, M.; Landobasa, Y.M.T.; Li, Q.; Dao, H.Z. Surface plasmon enhanced infrared photodetection. Opto-Electron. Adv. 2019, 2, 180026. [Google Scholar]
- Kunhua, W.; Li, C.; Jinyun, Z.; Liang, L.; Yihong, F. A Plasmonic Chip-Scale Refractive Index Sensor Design Based on Multiple Fano Resonances. Sensors 2018, 18, 3181. [Google Scholar]
- Qin, C.; Li, L.; Qilin, Z.; Yaxin, Z.; Long, W. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron. Adv. 2020, 3, 190040. [Google Scholar]
- Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J.R. DNA hybridization using surface plasmon-coupled emission. Anal. Chem. 2003, 75, 6629–6633. [Google Scholar] [CrossRef]
- Chiu, N.-F.; Yu, C.; Nien, S.-Y.; Lee, J.-H.; Kuan, C.-H.; Wu, K.-C.; Lee, C.-K.; Lin, C.-W. Enhancement and tunability of active plasmonic by multilayer grating coupled emission. Opt. Express 2007, 15, 11608–11615. [Google Scholar] [CrossRef]
- Tawa, K.; Nakayama, T.; Kintaka, K. Optimal structure of a plasmonic chip for the sensitive bio-detection with the grating-coupled surface plasmon-field enhanced fluorescence (GC-SPF). Materials 2017, 10, 1063. [Google Scholar] [CrossRef]
- Jong, S.Y.; George, N.G.; James, M.R.; Ernest, F.G.; Michael, A.L. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip. Analyst 2012, 137, 2574–2581. [Google Scholar]
- Tawa, K.; Yamamura, S.; Sasakawa, C.; Shibata, I.; Kataoka, M. Sensitive detection of cell surface membrane proteins in living breast cancer cells using multicolor fluorescence microscopy with a plasmonic chip. ACS Appl. Mater. Interface 2016, 8, 29893–29898. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Chida, H.; Kimura, F.; Yamamura, S.; Tawa, K. Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip. Micromachines 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Yasui, C.; Tawa, K.; Hosokawa, C.; Nishii, J.; Aota, H.; Matsumoto, A. Sensitive Fluorescence Microscopy of Neurons Cultured on a Plasmonic Chip. Jpn. J. Appl. Phys. 2012, 51, 06FK10. [Google Scholar] [CrossRef]
- Minoshima, W.; Hosokawa, C.; Kudoh, S.N.; Tawa, K. Real-time fluorescence measurement of spontaneous activity in high-density hippocampal network cultivated on a plasmonic dish. J. Chem. Phys. 2020, 152, 014706. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, W.; Hosokawa, C.; Kudoh, S.N.; Tawa, K. Long-term real-time imaging of the voltage sensitive dye in cultured hippocampal neurons with the Ag plasmonic dish. J. Photochem. Photobiol. A Chem. 2019, 384, 111949. [Google Scholar] [CrossRef]
- Tawa, K.; Izumi, S.; Sasakawa, C.; Hosokawa, C.; Toma, M. Enhanced fluorescence microscopy with the Bull’s eye-plasmonic chip. Optics Express. 2017, 25, 10622–10631. [Google Scholar] [CrossRef]
- Tawa, K.; Umetsu, M.; Nakazawa, H.; Hattori, T.; Kumagai, I. Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor. ACS Appl. Mater. Interfaces 2013, 5, 8628–8632. [Google Scholar] [CrossRef]
- Chance, R.R.; Prock, A.; Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 1978, 37, 1–65. [Google Scholar]
- Tawa, K.; Morigaki, K. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophys. J. 2005, 89, 2750–2758. [Google Scholar] [CrossRef] [Green Version]
- Ying, L.; Long-Jiang, D.; Wei, Z.; Xiao-Ai, Z.; Ying-Lu, Z.; Zhen-Zhen, L.; Xu-Dong, W. Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications. Methods Appl. Fluoresc. 2018, 6, 034002. [Google Scholar]
- Hong, Y.S.; Ten, I.W.; Anton, S.; Lin, W.; Ping, B.; Jie, D.; Shifeng, G.; Yi, W.; Wolfgang, K.; Xiaodong, Z. Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots. Lab Chip 2015, 15, 253–263. [Google Scholar]
- Lisa, A.K.; Dale, M.W.; Lori, L.C.; Mark, W.N.; Alan, V.O. Spatially Correlated Fluorescence/AFM of Individual Nanosized Particles and Biomolecules. Anal. Chem. 2001, 73, 1959–1966. [Google Scholar]
Interface | Resonance Wavelengths and Plasmon Modes | |
---|---|---|
Silver/Water (Top Side) | Silver/Resin (Rear Side) | |
1D chip | 410 nm 670 nm: , | 460 nm: |
2D chip | 415 nm: 520 nm: 695 nm: | 465 nm: 595 nm: |
Fluorophores | Concentration Prepared | Peak Wavelength/nm(Ex/Em) | Fluorescence Quantum Yield/% |
---|---|---|---|
Yellow–green (YG) | 2.0 × 1013 particles/mL | 505/515 | 44 (1) |
Cy5-Sreptavidin (Cy5-SA) | 32 nM | 650/670 | 27 (2) |
Qdot655-Streptavidin (Qdot655-SA) | 5 nM | -/655 | 80 (3) |
Filter | Excitation Wavelength Range/nm | Emission Wavelength Range/nm |
---|---|---|
CFP | exCFP: 425–445 | ― |
GFP | exGFP: 460–480 | emGFP: 495–540 |
Cy3 | exCy3: 510–555 | emCy3: 570–615 |
Cy5 | exCy5: 600–650 | emCy5: 670–715 |
Emission Filter (Wavelength Range) | emGFP (495–540 nm) | emCy3 (570–615 nm) | |
---|---|---|---|
Total enhancement factor, excitation enhancement and emission enhancement factors (plasmon mode assigned) | Fluorescence spectra | 1.4 Ex: 1.4 () Em: 1 (none) | 1.4 Ex: 1.4 () Em: 1 (none) |
Fluorescence image | 1.4 Ex: 1.4 () Em: 1 (none) | 1.4 Ex: 1.4 () Em: 1 (none) |
Emission Filter (Wavelength Range) | emGFP (495–540 nm) | emCy3 (570–615 nm) | |
---|---|---|---|
Total enhancement factor, excitation enhancement and emission enhancement factors (plasmon mode assigned) | Fluorescence spectra | 2.5 Ex: 2.5 () Em: 1 (none) | 2.2 Ex: 2.2 () Em: 1 (none) |
Fluorescence image | 2.0 Ex: 2.0 (, ) Em: 1 (none) | 2.0 Ex: 2.0 () Em: 1 (none) |
Emission Filter (Wavelength Range) | emGFP (495–540 nm) | emCy3 (570–615 nm) | |
---|---|---|---|
Total enhancement factor, excitation enhancement and emission enhancement factors (plasmon mode assigned) | Fluorescence spectra | 2.0 Ex: 1.3 () Em: 1.5() | 1.3 Ex: 1.3 () Em: 1 (none) |
Fluorescence image | 2.4 Ex: 1.3 () Em: 1.8 () | 1.3 Ex: 1.3 () Em: 1 (none) |
Emission Filter (Wavelength Range) | emGFP (495–540 nm) | emCy3 (570–615 nm) | |
---|---|---|---|
Total enhancement factor, excitation enhancement and emission enhancement factors (plasmon mode assigned) | Fluorescence spectra | 2.8 Ex: 2.1 () Em: 1.3 () | 2.1 Ex: 2.1 (, ) Em: 1 (none) |
Fluorescence image | 3.4 Ex: 2.2 (, ) Em: 1.5 () | 2.2 Ex: 2.2 (, ) Em: 1 (none) |
Excitation Wavelength | Excitation Filter (Wavelength Range) Fluorophores | exCFP (425–445 nm) | exGFP (460–480 nm) | exCy3 (510–555 nm) | exCy5 (600–650 nm) |
---|---|---|---|---|---|
Total enhancement factor, excitation enhancement and emission enhancement factors (plasmon mode assigned) | YG | ― | 3.1 [6%] Ex: 1 (none) Em: 3.0 () | 3.2 [10%] Ex: 1 (none) Em: 3.2 () | ― |
Cy5-SA | ― | ― | 5.6 [7%] Ex:1 (none) Em: 5.6 () | 5.3 [5%] Ex:1 (none) Em: 5.3 () | |
Qdot655-SA | 2.5 [10%] Ex: 1.2 () Em: 2.1 () | 2.2 [5%] Ex: 1 (none) Em: 2.2 () | 2.1 [5%] Ex: 1 (none) Em: 2.1 () | 2.2 [9%] Ex: 1 (none) Em: 2.2 () |
Excitation Filter (Wavelength Range) Fluorophores | exCFP (425–445 nm) | exGFP (460–480 nm) | exCy3 (510–555 nm) | exCy5 (600–650 nm) | |
---|---|---|---|---|---|
Total enhancement factor, excitation enhancement and emission enhancement factors (plasmon mode assigned) | YG | ― | 4.0 [4%] Ex: 1 (none) Em: 4.0 () | 5.2 [1%] Ex: 1.3 () Em: 4.0 () | ― |
Cy5-SA | ― | ― | 9.7 [4%] Ex: 1.3 () Em: 7.5 () | 7.5 [5%] Ex: 1 (none) Em: 7.5 () | |
Qdot655-SA | 3.0 [10%] Ex: 1.1 () Em: 2.8 () | 2.8 [10%] Ex: 1 (none) Em: 2.8 () | 3.7 [6%] Ex: 1.3 () Em: 2.8() | 3.0 [10%] Ex: 1 (none) Em: 3.0 () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chida, H.; Tawa, K. Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip. Sensors 2020, 20, 6415. https://doi.org/10.3390/s20226415
Chida H, Tawa K. Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip. Sensors. 2020; 20(22):6415. https://doi.org/10.3390/s20226415
Chicago/Turabian StyleChida, Hinako, and Keiko Tawa. 2020. "Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip" Sensors 20, no. 22: 6415. https://doi.org/10.3390/s20226415
APA StyleChida, H., & Tawa, K. (2020). Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip. Sensors, 20(22), 6415. https://doi.org/10.3390/s20226415