Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls
Abstract
:1. Introduction
2. Methods
2.1. Recording Systems
2.2. Falls
2.3. Activities of Daily Living
2.4. Signal Processing
2.5. Classification
2.6. Training and Testing: Cross-Validation
2.7. Performance Evaluation
2.8. Software
2.9. Computational Time Evaluation
3. Results
4. Discussion
4.1. Limitations
4.2. Implications for Fall Detection Systems and Clinical Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Thompson, H.; Demiris, G. Fall detection devices and their use with older adults: A systematic review. J. Geriatr. Phys. Ther. 2014, 37, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Silva de Lima, A.L.; Evers, L.J.W.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef] [Green Version]
- Schwickert, L.; Becker, C.; Lindemann, U.; Maréchal, C.; Bourke, A.; Chiari, L.; Helbostad, J.L.; Zijlstra, W.; Aminian, K.; Todd, C.; et al. Fall detection with body-worn sensors: A systematic review. Z. Gerontol. Geriatr. 2013, 46, 706–719. [Google Scholar] [CrossRef]
- Casilari, E.; Luque, R.; Morón, M.-J. Analysis of Android Device-Based Solutions for Fall Detection. Sensors 2015, 15, 17827–17894. [Google Scholar] [CrossRef] [Green Version]
- Casilari, E.; Santoyo-Ramón, J.-A.; Cano-García, J.-M. Analysis of Public Datasets for Wearable Fall Detection Systems. Sensors 2017, 17, 1513. [Google Scholar] [CrossRef] [Green Version]
- Igual, R.; Medrano, C.; Plaza, I. A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 2015, 37, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Hoey, J. Review of fall detection techniques: A data availability perspective. Med. Eng. Phys. 2017, 39, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La Vecchia, C.; Negri, E. Risk Factors for Falls in Community-dwelling Older People. Epidemiology 2010, 21, 658–668. [Google Scholar] [CrossRef]
- Peeters, G.; van Schoor, N.M.; Lips, P. Fall risk: The clinical relevance of falls and how to integrate fall risk with fracture risk. Best Pract. Res. Clin. Rheumatol. 2009, 23, 797–804. [Google Scholar] [CrossRef]
- Schwickert, L.; Klenk, J.; Zijlstra, W.; Forst-Gill, M.; Sczuka, K.; Helbostad, J.L.; Chiari, L.; Aminian, K.; Todd, C.; Becker, C. Reading from the Black Box: What Sensors Tell Us about Resting and Recovery after Real-World Falls. Gerontology 2017. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.; Nayak, U.S.; Isaacs, B. How dangerous are falls in old people at home? Br. Med. J. 1981, 282, 266–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannurat, N.; Thiemjarus, S.; Nantajeewarawat, E. Automatic fall monitoring: A review. Sensors 2014, 14, 12900–12936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, M.A.; Mohktar, M.S.; Kamaruzzaman, S.B.; Lim, K.S.; Pin, T.M.; Ibrahim, F. Smartphone-based solutions for fall detection and prevention: Challenges and open issues. Sensors 2014, 14, 7181–7208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, S.; Oudejans, D.; Thompson, H.J.; Demiris, G. Real-world accuracy and use of a wearable fall detection device by older adults. J. Am. Geriatr. Soc. 2015, 63, 2415–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsitz, L.A.; Tchalla, A.E.; Iloputaife, I.; Gagnon, M.; Dole, K.; Su, Z.Z.; Klickstein, L. Evaluation of an Automated Falls Detection Device in Nursing Home Residents. J. Am. Geriatr. Soc. 2016, 64, 365–368. [Google Scholar] [CrossRef]
- Stack, E. Falls are unintentional: Studying simulations is a waste of faking time. J. Rehabil. Assist. Technol. Eng. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, L.; Bagalà, F.; Zanetti, A.; Klenk, J.; Becker, C.; Cappello, A. A wavelet-based approach to fall detection. Sensors 2015, 15, 11575–11586. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-H.; Hsu, Y.-W.; Yang, J.-J.; Jaw, F.-S. Enhanced characterization of an accelerometer-based fall detection algorithm using a repository. Instrum. Sci. Technol. 2017, 45, 382–391. [Google Scholar] [CrossRef]
- Tamura, T. Wearable accelerometer in clinical use. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Shanghai, China, 17–18 January 2005; Volume 7, pp. 7165–7166. [Google Scholar]
- Kangas, M.; Korpelainen, R.; Vikman, I.; Nyberg, L.; Jämsä, T. Sensitivity and False Alarm Rate of a Fall Sensor in Long-Term Fall Detection in the Elderly. Gerontology 2014, 61, 61–68. [Google Scholar] [CrossRef]
- Feldwieser, F.; Gietzelt, M.; Goevercin, M.; Marschollek, M.; Meis, M.; Winkelbach, S.; Wolf, K.H.; Spehr, J.; Steinhagen-Thiessen, E. Multimodal sensor-based fall detection within the domestic environment of elderly people. Z. Gerontol. Geriatr. 2014, 47, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Bloch, F.; Gautier, V.; Noury, N.; Lundy, J.-E.; Poujaud, J.; Claessens, Y.-E.; Rigaud, A.-S. Evaluation under real-life conditions of a stand-alone fall detector for the elderly subjects. Ann. Phys. Rehabil. Med. 2011, 54, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagalà, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 2012, 7, e37062. [Google Scholar] [CrossRef] [Green Version]
- Aziz, O.; Klenk, J.; Schwickert, L.; Chiari, L.; Becker, C.; Park, E.J.; Mori, G.; Robinovitch, S.N. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. PLoS ONE 2017, 12, e0180318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klenk, J.; Becker, C.; Lieken, F.; Nicolai, S.; Maetzler, W.; Alt, W.; Zijlstra, W.; Hausdorff, J.M.; van Lummel, R.C.; Chiari, L.; et al. Comparison of acceleration signals of simulated and real-world backward falls. Med. Eng. Phys. 2011, 33, 368–373. [Google Scholar] [CrossRef] [PubMed]
- FARSEEING. Available online: http://farseeingresearch.eu/ (accessed on 6 February 2019).
- Klenk, J.; Schwickert, L.; Palmerini, L.; Mellone, S.; Bourke, A.; Ihlen, E.A.F.; Kerse, N.; Hauer, K.; Pijnappels, M.; Synofzik, M.; et al. The FARSEEING real-world fall repository: A large-scale collaborative database to collect and share sensor signals from real-world falls. Eur. Rev. Aging Phys. Act. 2016, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Karuppiah, A. A Survey on Recent Advances in Wearable Fall Detection Systems. Biomed Res. Int. 2020. [Google Scholar] [CrossRef]
- Aziz, O.; Musngi, M.; Park, E.J.; Mori, G.; Robinovitch, S.N. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2017, 55, 45–55. [Google Scholar] [CrossRef]
- Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 2014, 9, e94811. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-Y.; Liu, K.-C.; Huang, C.-N.; Chu, W.-C.; Chan, C.-T. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model. Sensors 2017, 17, 307. [Google Scholar] [CrossRef]
- Liu, K.C.; Hsieh, C.Y.; Hsu, S.J.P.; Chan, C.T. Impact of Sampling Rate on Wearable-Based Fall Detection Systems Based on Machine Learning Models. IEEE Sens. J. 2018, 18, 9882–9890. [Google Scholar] [CrossRef]
- Putra, I.; Brusey, J.; Gaura, E.; Vesilo, R. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection. Sensors 2017, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, O.; Park, E.J.; Mori, G.; Robinovitch, S.N. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers. Gait Posture 2014, 39, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.V.; Kording, K.; Herrmann, M.; Jayaraman, A. Fall Classification by Machine Learning Using Mobile Phones. PLoS ONE 2012, 7, e36556. [Google Scholar] [CrossRef] [Green Version]
- Guvensan, M.; Kansiz, A.; Camgoz, N.; Turkmen, H.; Yavuz, A.; Karsligil, M. An Energy-Efficient Multi-Tier Architecture for Fall Detection on Smartphones. Sensors 2017, 17, 1487. [Google Scholar] [CrossRef] [Green Version]
- Tsinganos, P.; Skodras, A. On the Comparison of Wearable Sensor Data Fusion to a Single Sensor Machine Learning Technique in Fall Detection. Sensors 2018, 18, 592. [Google Scholar] [CrossRef] [Green Version]
- Bourke, A.K.; Klenk, J.; Schwickert, L.; Aminian, K.; Ihlen, E.A.F.; Mellone, S.; Helbostad, J.L.; Chiari, L.; Becker, C. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: New York, NY, USA, 2016; pp. 3712–3715. [Google Scholar]
- Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online Fall Detection using Recurrent Neural Networks on Smart Wearable Devices. IEEE Trans. Emerg. Top. Comput. 2020. [Google Scholar] [CrossRef]
- Santos, G.; Endo, P.; Monteiro, K.; Rocha, E.; Silva, I.; Lynn, T. Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks. Sensors 2019, 19, 1644. [Google Scholar] [CrossRef] [Green Version]
- Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets. Sensors 2020, 20, 1466. [Google Scholar] [CrossRef] [Green Version]
- Cattelani, L.; Palumbo, P.; Palmerini, L.; Bandinelli, S.; Becker, C.; Chesani, F.; Chiari, L. FRAT-up, a web-based fall-risk assessment tool for elderly people living in the community. J. Med. Internet Res. 2015, 17. [Google Scholar] [CrossRef] [Green Version]
- Klenk, J.; Chiari, L.; Helbostad, J.L.; Zijlstra, W.; Aminian, K.; Todd, C.; Bandinelli, S.; Kerse, N.; Schwickert, L.; Mellone, S.; et al. Development of a standard fall data format for signals from body-worn sensors. Z. Gerontol. Geriatr. 2013, 46, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Schwickert, L.; Mellone, S.; Bagalà, F.; Chiari, L.; Helbostad, J.L.; Zijlstra, W.; Aminian, K.; Bourke, A.; Todd, C.; et al. Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sensors. Z. Gerontol. Geriatr. 2012, 45, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Hsu, C.; Hsu, C.; Chang, C.; Lin, C. A Practical Guide to Support Vector Classification. 2010. Available online: https://www.ee.columbia.edu/~sfchang/course/svia/papers/svm-practical-guide.pdf (accessed on 6 February 2019).
- Broadley, R.; Klenk, J.; Thies, S.; Kenney, L.; Granat, M. Methods for the Real-World Evaluation of Fall Detection Technology: A Scoping Review. Sensors 2018, 18, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, S.E.; Jørstad-Stein, E.C.; Hauer, K.; Becker, C. Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus. J. Am. Geriatr. Soc. 2005, 53, 1618–1622. [Google Scholar] [CrossRef]
- Ganz, D.A.; Higashi, T.; Rubenstein, L.Z. Monitoring Falls in Cohort Studies of Community-Dwelling Older People: Effect of the Recall Interval. J. Am. Geriatr. Soc. 2005, 53, 2190–2194. [Google Scholar] [CrossRef]
- Hale, W.A.; Delaney, M.J.; Cable, T. Accuracy of patient recall and chart documentation of falls. J. Am. Board Fam. Pr. 1993, 6, 239–242. [Google Scholar]
- Cummings, S.R.; Nevitt, M.C.; Kidd, S. Forgetting falls. The limited accuracy of recall of falls in the elderly. J. Am. Geriatr. Soc. 1988, 36, 613–616. [Google Scholar] [CrossRef]
- Fortino, G.; Gravina, R. Fall-MobileGuard: A Smart Real-Time Fall Detection System. In Proceedings of the 10th EAI International Conference on Body Area Networks, Sydney, Australia, 28–30 September 2015. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Redmond, S.; Lu, W.; Stevens, M.; Lord, S.; Lovell, N. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector. IEEE Trans. Biomed. Eng. 2017. [Google Scholar] [CrossRef]
Feature | Description | Phase |
---|---|---|
Lower peak value (LPV) | Minimum value of Normacc before the identified peak. | Pre-peak |
Upper peak value (UPV) | Value of the identified peak of Normacc. It is, by construction, the value of the signal 1 s after the start of the window. | Peak sample |
Wavelet-based coefficient | A mother wavelet was defined as the average of the fall signals in the training set. A similarity coefficient to such mother wavelet was calculated following the procedure described in [18]. | Impact (pre-peak + post-peak) |
Periodicity after impact | This feature is based on the autocorrelation of Normacc. The rationale is that in the interval right after a fall, there cannot be a periodic movement, such as walking or running. It is computed in a segment of 2 s, starting 0.5 s after the peak sample. | Post-peak and post-impact |
Standard deviation after impact | Standard deviation (SD) of Normacc during the post-impact phase. The rationale is that in the interval following the impact, the subject might produce limited movements compared to normal ADLs. | Post-impact |
Classifier | Features | AUC | Sensitivity (Recall) [%] | Specificity [%] | False Alarm Rate [FA/hour] | Positive Predictive Value (Precision) [%] | F-Measure [%] |
---|---|---|---|---|---|---|---|
Naïve Bayes | MultiPhase | 0.996 | 88.1 | 99.1 | 1.09 | 39 | 54.1 |
Logistic Regression | MultiPhase | 0.996 | 83.2 | 99.3 | 0.76 | 46.6 | 59.8 |
KNN | MultiPhase | 0.958 | 83.9 | 99.2 | 0.92 | 42.1 | 56.1 |
Support Vector Machines | MultiPhase | 0.993 | 81.1 | 99.5 | 0.56 | 53.7 | 64.6 |
Random Forests | MultiPhase | 0.989 | 83.2 | 98.9 | 1.32 | 33.3 | 47.6 |
Naïve Bayes | Conventional | 0.977 | 95.1 | 95.5 | 5.23 | 12.6 | 22.3 |
Logistic Regression | Conventional | 0.987 | 84.6 | 98.5 | 1.7 | 28.3 | 42.5 |
KNN | Conventional | 0.959 | 85.3 | 98.8 | 1.42 | 32.4 | 46.9 |
Support Vector Machines | Conventional | 0.986 | 83.9 | 98.6 | 1.61 | 29.3 | 43.4 |
Random Forests | Conventional | 0.985 | 88.8 | 98.6 | 1.57 | 31 | 45.9 |
Threshold-based | Kangas et al. | / | 30.1 | 99.3 | 0.82 | 22.9 | 26.3 |
SVM with Multiphase Features | |||||
---|---|---|---|---|---|
Sensitivity [%] | 53.8 | 64.3 | 81.1 | 93.7 | 95.1 |
FA rate [FA/h] | 0.06 | 0.11 | 0.56 | 2.78 | 5.56 |
Classifier | Features | Data Acquisition (ms) | Feature Extraction (ms) | Classification (ms) |
---|---|---|---|---|
Naïve Bayes | MultiPhase | 0.145 (0.07) | 0.104 (0.05) | 0.695 (0.15) |
Logistic Regression | MultiPhase | 0.145 (0.07) | 0.104 (0.05) | 0.03 (0.01) |
KNN | MultiPhase | 0.145 (0.07) | 0.104 (0.05) | 1.265 (0.23) |
Support Vector Machines | MultiPhase | 0.145 (0.07) | 0.104 (0.05) | 0.452 (0.14) |
Random Forests | MultiPhase | 0.145 (0.07) | 0.104 (0.05) | 17.63 (5.1) |
Naïve Bayes | Conventional | 0.007 (0.01) | 0.049 (0.05) | 0.686 (0.44) |
Logistic Regression | Conventional | 0.007 (0.01) | 0.049 (0.05) | 0.065 (0.05) |
KNN | Conventional | 0.007 (0.01) | 0.049 (0.05) | 1.176 (0.28) |
Support Vector Machines | Conventional | 0.007 (0.01) | 0.049 (0.05) | 0.368 (0.26) |
Random Forests | Conventional | 0.007 (0.01) | 0.049 (0.05) | 16.166 (31.06) |
Threshold-based | Kangas et al. | 0.008 (0.03) | 0.54 (0.15) | 0.002 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmerini, L.; Klenk, J.; Becker, C.; Chiari, L. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls. Sensors 2020, 20, 6479. https://doi.org/10.3390/s20226479
Palmerini L, Klenk J, Becker C, Chiari L. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls. Sensors. 2020; 20(22):6479. https://doi.org/10.3390/s20226479
Chicago/Turabian StylePalmerini, Luca, Jochen Klenk, Clemens Becker, and Lorenzo Chiari. 2020. "Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls" Sensors 20, no. 22: 6479. https://doi.org/10.3390/s20226479
APA StylePalmerini, L., Klenk, J., Becker, C., & Chiari, L. (2020). Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls. Sensors, 20(22), 6479. https://doi.org/10.3390/s20226479