Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy
Abstract
:1. Introduction
2. Retinal Image Databases
3. Methods
3.1. Overview
3.2. Preprocessing
3.3. Background Extraction
3.4. Detection of the Main Anatomical Structures
3.5. Red Lesion Candidate Segmentation
3.6. Exudate Candidate Segmentation
3.7. Red Lesion Classification
3.7.1. Feature Extraction
3.7.2. Feature Selection
3.7.3. Multilayer Perceptron Neural Network
3.8. Exudate Classification
3.8.1. Feature Extraction
3.8.2. Feature Selection
3.8.3. Multilayer Perceptron Neural Network
3.9. Performance Assessment for Lesion Detection
3.9.1. Pixel-Based Criterion
3.9.2. Image-Based Criterion
4. Results
4.1. Red Lesion Detection
4.1.1. MLP Configuration on the Training Set
4.1.2. Red Lesion Detection on the Test Set
4.2. Exudate Detection
4.2.1. MLP Configuration on the Training Set
4.2.2. Exudate Detection on the Test Set
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Approval
References
- Abramoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, S.S.; Maity, S.P. Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy. IEEE Trans. Biomed. Eng. 2018, 65, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Raman, R.; Ramasamy, K.; Rani, P.K. Telemedicine in diabetic retinopathy: Current status and future directions. Middle East Afr. J. Ophthalmol. 2015, 22, 174–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mookiah, M.R.K.; Acharya, U.R.; Chua, C.K.; Lim, C.M.; Ng, E.Y.K.; Laude, A. Computer-aided diagnosis of diabetic retinopathy: A review. Comput. Biol. Med. 2013, 43, 2136–2155. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, M.; Abràmoff, M.D.; van Ginneken, B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med. Image Anal. 2006, 10, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Bhuiyan, A.; Frost, S.; Vignarajan, J.; Tay-Kearney, M.L.; Kanagasingam, Y. Major automatic diabetic retinopathy screening systems and related core algorithms: A review. Mach. Vis. Appl. 2019, 30, 423–446. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Folk, J.C.; Han, D.P.; Walker, J.D.; Williams, D.F.; Russell, S.R.; Massin, P.; Cochener, B.; Gain, P.; Tang, L.; et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013, 131, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.D.; Philip, S.; Goatman, K.A.; Olson, J.A.; Sharp, P.F. Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imaging 2006, 25, 1223–1232. [Google Scholar] [CrossRef]
- Quellec, G.; Lamard, M.; Josselin, P.M.; Cazuguel, G.; Cochener, B.; Roux, C. Optimal Wavelet Transform for the Detection of Microaneurysms in Retina Photographs. IEEE Trans. Med. Imaging 2008, 27, 1230–1241. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zhu, W.; Shi, F.; Zhu, S.; Chen, X. Automatic detection of microaneurysms in retinal fundus images. Comput. Med. Imaging Graph. 2017, 55, 106–112. [Google Scholar] [CrossRef]
- Lazar, I.; Hajdu, A. Retinal Microaneurysm Detection Through Local Rotating Cross-Section Profile Analysis. IEEE Trans. Med. Imaging 2013, 32, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, Y.; Nakagawa, T.; Hayashi, Y.; Kakogawa, M.; Sawada, A.; Kawase, K.; Hara, T.; Fujita, H. Improvement of automatic hemorrhage detection methods using brightness correction on fundus images. In Proceedings of the Medical Imaging 2008: Computer-Aided Diagnosis; Giger, M.L., Karssemeijer, N., Eds.; SPIE: San Diego, CA, USA, 2008; Volume 6915. [Google Scholar]
- Fleming, A.D.; Goatmana, K.A.; Williams, G.J.; Philip, S.; Sharpa, P.F.; Olson, J.A. Automated detection of blot haemorrhages as a sign of referable diabetic retinopathy. In Proceedings of the Medical Image Understanding and Analysis (MIUA2008), Dundee, Scotland, UK, 2–3 July 2008; pp. 235–239. [Google Scholar]
- Zhang, X.; Chutatape, O. A SVM approach for detection of hemorrhages in background diabetic retinopathy. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; pp. 2435–2440. [Google Scholar]
- Seoud, L.; Hurtut, T.; Chelbi, J.; Cheriet, F.; Langlois, J.M.P. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. IEEE Trans. Med. Imaging 2016, 35, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wu, C.; Chen, D.; Wang, Z.; Yi, Y.; Du, W. Automated Detection of Red Lesions Using Superpixel Multichannel Multifeature. Comput. Math. Methods Med. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Oraá, R.; Jiménez-García, J.; García, M.; López-Gálvez, M.I.; Oraá-Pérez, J.; Hornero, R. Entropy rate superpixel classification for automatic red lesion detection in fundus images. Entropy 2019, 21, 417. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.; Duan, L.; Wong, D.W.K.; Liu, J.; Wong, T.Y. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels. Comput. Methods Programs Biomed. 2017, 138, 83–91. [Google Scholar] [CrossRef]
- Orlando, J.I.; Prokofyeva, E.; del Fresno, M.; Blaschko, M.B. An ensemble deep learning based approach for red lesion detection in fundus images. Comput. Methods Programs Biomed. 2018, 153, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Abràmoff, M.D.; Lou, Y.; Erginay, A.; Clarida, W.; Amelon, R.; Folk, J.C.; Niemeijer, M. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Investig. Opthalmology Vis. Sci. 2016, 57, 5200. [Google Scholar] [CrossRef] [Green Version]
- Lam, C.; Yu, C.; Huang, L.; Rubin, D. Retinal lesion detection with deep learning using image patches. Investig. Ophthalmol. Vis. Sci. 2018, 59, 590–596. [Google Scholar] [CrossRef]
- Osareh, A.; Shadgar, B.; Markham, R. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 535–545. [Google Scholar] [CrossRef]
- Sopharak, A.; Uyyanonvara, B.; Barman, S. Automatic exudate detection for diabetic retinopathy screening. ScienceAsia 2009, 35, 80–88. [Google Scholar] [CrossRef]
- Hsu, W.; Pallawala, P.M.D.S.; Lee, M.L.; Eong, K.-G.A. The role of domain knowledge in the detection of retinal hard exudates. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001. [Google Scholar]
- Imani, E.; Pourreza, H.R. A novel method for retinal exudate segmentation using signal separation algorithm. Comput. Methods Programs Biomed. 2016, 133, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.I.; García, M.; Mayo, A.; López, M.I.; Hornero, R. Retinal image analysis based on mixture models to detect hard exudates. Med. Image Anal. 2009, 13, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Walter, T.; Klein, J.-C.; Massin, P.; Erginay, A. A contribution of image processing to the diagnosis of diabetic retinopathy—detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 2002, 21, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.I.; Hornero, R.; López, M.I.; Aboy, M.; Poza, J.; Abásolo, D.; Sánchez, C.I.; Hornero, R.; López, M.I.; Aboy, M.; et al. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Med. Eng. Phys. 2008, 30, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, M.; Van Ginneken, B.; Russell, S.R.; Suttorp-Schulten, M.S.A.; Abràmoff, M.D. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2260–2267. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Gonçalves, L.; Ferreira, M. Exudate segmentation in fundus images using an ant colony optimization approach. Inf. Sci. (Ny) 2015, 296, 14–24. [Google Scholar] [CrossRef]
- Theera-Umpon, N.; Poonkasem, I.; Auephanwiriyakul, S.; Patikulsila, D. Hard exudate detection in retinal fundus images using supervised learning. Neural Comput. Appl. 2019, 32, 13079–13096. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, C.; Yi, Y.; Du, W. Automatic Detection of Exudates in Digital Color Fundus Images Using Superpixel Multi-Feature Classification. IEEE Access 2017, 5, 17077–17088. [Google Scholar] [CrossRef]
- Adem, K. Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Syst. Appl. 2018, 114, 289–295. [Google Scholar] [CrossRef]
- Prentašić, P.; Lončarić, S. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 2016, 137, 281–292. [Google Scholar] [CrossRef]
- Khojasteh, P.; Passos Júnior, L.A.; Carvalho, T.; Rezende, E.; Aliahmad, B.; Papa, J.P.; Kumar, D.K. Exudate detection in fundus images using deeply-learnable features. Comput. Biol. Med. 2019, 104, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, K.; Kang, H.; Liu, T.; Gao, Y.; Li, T. Bin loss for hard exudates segmentation in fundus images. Neurocomputing 2019, 392, 314–324. [Google Scholar] [CrossRef]
- Kauppi, T.; Kalesnykiene, V.; Kamarainen, J.-K.; Lensu, L.; Sorri, I.; Raninen, A.; Voutilainen, R.; Uusitalo, H.; Kalviainen, H.; Pietila, J. DIARETDB1 diabetic retinopathy database and evaluation protocol. In Proceedings of the British Machine Vision Conference, Coventry, UK, 10–13 September 2007. [Google Scholar]
- National Service Framework for Diabetes: Standards; Department of Health: London, UK, 2002.
- Yu, L.; Liu, H. Efficient Feature Selection via Analysis of Relevance and Redundancy. J. Mach. Learn. Res. 2004, 5, 1205–1224. [Google Scholar]
- Bishop, C. Neural Networks for Pattern Recognition, 1st ed.; Oxford University Press: New York, NY, USA, 1995; Volume 1995, ISBN 9780198538646. [Google Scholar]
- Foracchia, M.; Grisan, E.; Ruggeri, A. Luminosity and contrast normalization in retinal images. Med. Image Anal. 2005, 9, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Romero-Oraá, R.; García, M.; Oraá-Pérez, J.; López, M.I.; Hornero, R. A robust method for the automatic location of the optic disc and the fovea in fundus images. Comput. Methods Programs Biomed. 2020, 196, 105599. [Google Scholar] [CrossRef]
- Niemeijer, M.; Abràmoff, M.D.; van Ginneken, B. Fast detection of the optic disc and fovea in color fundus photographs. Med. Image Anal. 2009, 13, 859–870. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, H.K.; Liu, C.C.; Yu, C.Y.; Kuo, S.W.; Yu, S.S. A novel optic disc detection scheme on retinal images. Expert Syst. Appl. 2012, 39, 10600–10606. [Google Scholar] [CrossRef]
- Lyu, X.; Li, H.; Zhen, Y.; Ji, X.; Zhang, S. Deep tessellated retinal image detection using Convolutional Neural Networks. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 676–680. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Dorling Kindersley: London, UK, 2009; ISBN 8131726959. [Google Scholar]
- Giancardo, L.; Chaum, E.; Karnowski, T.P.; Meriaudeau, F.; Tobin, K.W.; Li, Y. Bright retinal lesions detection using color fundus images containing reflective features. IFMBE Proc. 2009, 25, 292–295. [Google Scholar]
- García, M.; Sánchez, C.I.; López, M.I.; Hornero, R. Automatic Detection of Red Lesions in Retinal Images Using a Multilayer Perceptron Neural Network. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 5425–5428. [Google Scholar]
- Huang, G.-B.; Chen, Y.-Q.; Babri, H.A. Classification ability of single hidden layer feedforward neural networks. IEEE Trans. Neural Netw. 2000, 11, 799–801. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Sánchez, C.I.; López, M.I.; Abásolo, D.; Hornero, R. Neural network based detection of hard exudates in retinal images. Comput. Methods Programs Biomed. 2009, 93, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.; López, M.I.; Álvarez, D.; Hornero, R. Assessment of four neural network based classifiers to automatically detect red lesions in retinal images. Med. Eng. Phys. 2010, 32, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, H.F.; Nandi, A.K.; Al-Nuaimy, W. Automated detection of red lesions from digital colour fundus photographs. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 6232–6235. [Google Scholar]
- Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K. Screening fundus images for diabetic retinopathy. In Proceedings of the Conference Record—Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 4–7 November 2012; pp. 1641–1645. [Google Scholar]
- Harangi, B.; Hajdu, A. Automatic exudate detection by fusing multiple active contours and regionwise classification. Comput. Biol. Med. 2014, 54, 156–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zou, B.; Chen, J.; Ke, W.; Yue, K.; Chen, Z.; Zhao, G. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Comput. Med. Imaging Graph. 2016, 55, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, M.; Van Ginneken, B.; Staal, J.; Suttorp-Schulten, M.S.A.; Abràmoff, M.D. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging 2005, 24, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Grisan, E.; Ruggeri, A. A hierarchical bayesian classification for non-vascular lesions detection in fundus images. In Proceedings of the 3rd European Medical and Biological Engineering Conference, Prague, Czech Republic, 20–25 November 2005; Volume 11. [Google Scholar]
- Sánchez, C.I.; Niemeijer, M.; Dumitrescu, A.V.; Suttorp-Schulten, M.S.A.; Abràmoff, M.D.; van Ginneken, B. Evaluation of a Computer-Aided Diagnosis System for Diabetic Retinopathy Screening on Public Data. Investig. Opthalmol. Vis. Sci. 2011, 52, 4866. [Google Scholar] [CrossRef]
- Kaur, J.; Mittal, D. A generalized method for the segmentation of exudates from pathological retinal fundus images. Biocybern. Biomed. Eng. 2018, 38, 27–53. [Google Scholar] [CrossRef]
Num. | Description | Selected for Red Lesion (RL) Detection | Selected for Exudate (EX) Detection |
---|---|---|---|
1 | Area of the region | - | - |
2 | Width of the bounding box (smallest rectangle containing the region) | - | - |
3 | Height of the bounding box | - | - |
4 | Area of the smallest convex hull (smallest convex polygon that can contain the region) | - | - |
5 | Eccentricity of the ellipse that has the same second moments as the region | 5 | 5 |
6 | Number of holes in the region | - | - |
7 | Ratio of pixels in the region to pixels in the total bounding box | - | 7 |
8 | Length of the major axis of the ellipse that has the same normalized second central moments as the region | - | - |
9 | Length of the minor axis of the ellipse that hast the same normalized second central moments as the region | - | - |
10 | Distance around the boundary of the region (perimeter length) | - | - |
11 | Proportion of the pixels in the convex hull that are also in the region (solidity) | 11 | - |
12–14 | Mean of the pixels inside the region computed in the Red-Green- Blue (RGB) channels of the image | 13 | - |
15–17 | Median of the pixels inside the region computed in the RGB channels of the image | - | 17 |
18–20 | Standard deviation of the pixels inside the region computed in the RGB channels of the image | 18, 19 | 18–20 |
21–23 | Entropy of the pixels inside the region computed in the RGB channels of the image | 22, 23 | 21–23 |
24–26 | Mean of the pixels inside the region computed in the Hue-Saturation-Value (HSV) channels of the image / | 24, 26 | 26 |
27–29 | Median of the pixels inside the region computed in the HSV channels of the image / | 28, 29 | 27, 29 |
30–32 | Standard deviation of the pixels inside the region computed in the HSV channels of the image / | 32 | 30, 32 |
33–35 | Entropy of the pixels inside the region computed in the HSV channels of the image / | 35 | 34, 35 |
36–38 | Mean of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
39–41 | Median of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
42–44 | Standard deviation of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | 44 | 42 |
45–47 | Entropy of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
48–50 | Mean of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
51–53 | Median of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
54–56 | Standard deviation of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
57–59 | Entropy of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | 59 | 57 |
60–62 | Mean of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | 62 |
63–65 | Median of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | 63–65 | 64, 65 |
66–68 | Standard deviation of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | 66 | - |
69–71 | Entropy of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
72–74 | Mean of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | 73, 74 |
75–77 | Median of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
78–80 | Standard deviation of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | 78–80 |
81–83 | Entropy of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | 83 |
84–86 | Mean of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
87–89 | Median of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | - |
90–81 | Standard deviation of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | 90 | 91 |
93–95 | Entropy of the pixels inside a circle with radius centered on the region computed in the HSV channels of the image | - | 93 |
96 | Mean of all the pixels the V channel of the image | 96 | 96 |
97 | Mean of the pixels calculated in the border of the region applying Prewitt operator in the image | 97 | 97 |
98 | Mean of the pixels inside the region calculated in the result of applying multiscale line operator filters | 98 | 98 |
99 | Distance to the center of the optic disc (OD) | - | 99 |
100 | Distance to the center of the fovea | 100 | 100 |
Database | Pixel-Based Criterion | Image-Based Criterion | |||
---|---|---|---|---|---|
Proprietary | 82.25 | 91.07 | 85.00 | 90.80 | 88.34 |
DiaretDB1 | 84.79 | 96.25 | 88.00 | 91.67 | 90.16 |
Database | Pixel-Based Criterion | Image-Based Criterion | |||
---|---|---|---|---|---|
Proprietary | 89.42 | 96.01 | 88.04 | 98.95 | 95.41 |
DiaretDB1 | 91.65 | 98.59 | 95.00 | 90.24 | 91.80 |
Method | Database | Nb. | ||
---|---|---|---|---|
Jaafar et al., 2011 [52] | DiaretDB1 | 219 | 98.80 | 86.20 |
Roychowdhury et al., 2012 [53] | DiaretDB1 | 89 | 75.50 | 93.73 |
Zhou et al., 2017a [16] | DiaretDB1 | 89 | 83.30 | 97.30 |
Romero-Oraá et al., 2019 [17] | DiaretDB1 | 89 | 84.00 | 88.89 |
García et al., 2010 [51] | Private | 115 | 100 | 56.00 |
Niemeijer et al., 2005 [56] | Private | 100 | 100 | 87.00 |
Grisan and Ruggeri, 2005 [57] | Private | 260 | 71.00 | 99.00 |
Seoud et al., 2016 [15] | Messidor | 1200 | 83.30 | 97.30 |
Orlando et al., 2018 [19] | Messidor | 1200 | 91.10 | 50.00 |
Sánchez et al., 2011 [58] | Messidor | 1200 | 92.20 | 50.00 |
Proposed method | DiaretDB1 | 89 | 88.00 | 91.67 |
Method | Database | Nb. | ||
---|---|---|---|---|
Walter et al., 2002 [27] | DiaretDB1 | 89 | 86.00 | 69.00 |
Harangi and Hajdu, 2014 [54] | DiaretDB1 | 89 | 92.00 | 68.00 |
Liu et al., 2016 [55] | DiaretDB1 | 89 | 83.00 | 75.00 |
Zhou et al., 2017b [32] | DiaretDB1 | 89 | 88.00 | 95.00 |
Kaur and Mittal, 2018 [59] | DiaretDB1 | 89 | 91.00 | 94.00 |
Adem, 2018 [33] | DiaretDB1 | 89 | 99.20 | 97.97 |
Proposed method | DiaretDB1 | 89 | 95.00 | 90.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Oraá, R.; García, M.; Oraá-Pérez, J.; López-Gálvez, M.I.; Hornero, R. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. Sensors 2020, 20, 6549. https://doi.org/10.3390/s20226549
Romero-Oraá R, García M, Oraá-Pérez J, López-Gálvez MI, Hornero R. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. Sensors. 2020; 20(22):6549. https://doi.org/10.3390/s20226549
Chicago/Turabian StyleRomero-Oraá, Roberto, María García, Javier Oraá-Pérez, María I. López-Gálvez, and Roberto Hornero. 2020. "Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy" Sensors 20, no. 22: 6549. https://doi.org/10.3390/s20226549
APA StyleRomero-Oraá, R., García, M., Oraá-Pérez, J., López-Gálvez, M. I., & Hornero, R. (2020). Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. Sensors, 20(22), 6549. https://doi.org/10.3390/s20226549