Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors
Abstract
1. Introduction
2. Distributed FeedBack (DFB) Quantum Cascade Laser (QCL) Array
2.1. DFB QCL Array without Multiplexer
2.2. DFB QCL Array with Multiplexer
3. External-Cavity Quantum Cascade Laser (EC QCL)
3.1. Standard EC QCL Systems and Intra-Cavity Laser Absorption Spectroscopy
3.2. EC QCL—Voltage Intracavity Sensing
4. External Cavity Coherent Quantum Cascade Laser Array
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum cascade laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Tittel, F.K.; Lewicki, R. Tunable mid-infrared laser absorption spectroscopy. In Semiconductor Lasers: Fundamentals and Applications; Woodhead Publishing: Cambridge, UK, 2013; pp. 579–629. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Kapsalidis, F.; Suëss, M.J.; Gini, E.; Beck, M.; Hundt, M.; Tuzson, B.; Emmenegger, L.; Faist, J. Multi-wavelength distributed feedback quantum cascade lasers for broadband trace gas spectroscopy. Semicond. Sci. Technol. 2019, 34, 083001. [Google Scholar] [CrossRef]
- Fathy, A.; Pivert, M.L.; Kim, Y.J.; Ba, M.O.; Erfan, M.; Sabry, Y.M.; Khalil, D.; Leprince-Wang, Y.; Bourouina, T.; Gnambodoe-Capochichi, M. Continuous Monitoring of Air Purification: A Study on Volatile Organic Compounds in a Gas Cell. Sensors 2020, 20, 934. [Google Scholar] [CrossRef] [PubMed]
- Curl, R.F.; Capasso, F.; Gmachl, C.; Kosterev, A.A.; McManus, B.; Lewicki, R.; Pusharsky, M.; Wysocki, G.; Tittel, F.K. Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 2010, 487, 1–18. [Google Scholar] [CrossRef]
- Sampaolo, A.; Menduni, G.; Patimisco, P.; Giglio, M.; Passaro, V.M.N.; Dong, L.; Wu, H.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration. Fuel 2020, 277, 118118. [Google Scholar] [CrossRef]
- Isensee, K.; Kröger-Lui, N.; Petrich, W. Biomedical applications of mid-infrared quantum cascade lasers—A review. Analyst 2018, 143, 5888–5911. [Google Scholar] [CrossRef]
- Bird, B.; Baker, M.J. Quantum Cascade Lasers in Biomedical Infrared Imaging. Trends Biotechnol. 2015, 33, 557–558. [Google Scholar] [CrossRef][Green Version]
- Kistenev, Y.V.; Borisov, A.V.; Vrazhnov, D.A. Breathomics for Lung Cancer Diagnosis. In Multimodal Optical Diagnostics of Cancer; Tuchin, V.V., Popp, J., Zakharov, V., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-44594-2. [Google Scholar]
- Kottmann, J.; Rey, J.; Sigrist, M. Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics. Sensors 2016, 16, 1663. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Petrus, M.; Bratu, A.-M.; Popa, C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020, 25, 1728. [Google Scholar] [CrossRef]
- Selvaraj, R.; Vasa, N.J.; Nagendra, S.M.S.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020, 25, 2227. [Google Scholar] [CrossRef]
- Rassel, S.; Xu, C.; Zhang, S.; Ban, D. Noninvasive blood glucose detection using a quantum cascade laser. Analyst 2020, 145, 2441–2456. [Google Scholar] [CrossRef] [PubMed]
- Faist, J.; Gmachl, C.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y. Distributed feedback quantum cascade lasers. Appl. Phys. Lett. 1997, 70, 2670–2672. [Google Scholar] [CrossRef]
- Totschnig, G.; Winter, F.; Pustogov, V.; Faist, J.; Müller, A. Mid-infrared external-cavity quantum-cascade laser. Opt. Lett. 2002, 27, 1788. [Google Scholar] [CrossRef] [PubMed]
- Parvitte, B.; Zéninari, V.; Thiébeaux, C.; Delahaigue, A.; Courtois, D. Infrared laser heterodyne systems. Spectrochim. Acta Part A 2004, 60, 1193–1213. [Google Scholar] [CrossRef]
- Parvitte, B.; Joly, L.; Zéninari, V.; Courtois, D. Preliminary results of heterodyne detection with quantum cascade lasers in the 9.1µm region. Spectrochim. Acta Part A 2004, 60, 3285–3290. [Google Scholar] [CrossRef]
- Weidmann, D.; Reburn, W.J.; Smith, K.M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies. Rev. Sci. Instrum. 2007, 78, 073107. [Google Scholar] [CrossRef]
- Stangier, T.; Sonnabend, G.; Sornig, M. Compact Setup of a Tunable Heterodyne Spectrometer for Infrared Observations of Atmospheric Trace-Gases. Remote Sens. 2013, 5, 3397–3414. [Google Scholar] [CrossRef]
- Krötz, P.; Stupar, D.; Krieg, J.; Sonnabend, G.; Sornig, M.; Giorgetta, F.; Baumann, E.; Giovannini, M.; Hoyler, N.; Hofstetter, D.; et al. Applications for quantum cascade lasers and detectors in mid-infrared high-resolution heterodyne astronomy. Appl. Phys. B 2008, 90, 187–190. [Google Scholar] [CrossRef][Green Version]
- Sonnabend, G.; Stupar, D.; Sornig, M.; Stangier, T.; Kostiuk, T.; Livengood, T.A. A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy. J. Mol. Spectrosc. 2013, 291, 98–101. [Google Scholar] [CrossRef]
- Joly, L.; Zéninari, V.; Parvitte, B.; Courtois, D.; Durry, G. Water vapor isotope ratio measurements in air with a quantum cascade laser spectrometer. Opt. Lett. 2006, 31, 143–145. [Google Scholar] [CrossRef]
- Joly, L.; Robert, C.; Parvitte, B.; Catoire, V.; Durry, G.; Richard, G.; Nicoullaud, B.; Zéninari, V. Development of a spectrometer using a cw DFB quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth’s atmosphere. Appl. Opt. 2008, 47, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Joly, L.; Decarpenterie, T.; Dumelié, N.; Thomas, X.; Mappe-Fogaing, I.; Cousin, J.; Mammez, D.; Vallon, R.; Durry, G.; Parvitte, B.; et al. Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 µm. Appl. Phys. B 2011, 103, 717–723. [Google Scholar] [CrossRef]
- Sigrist, M.W. Air Monitoring by Spectroscopic Techniques; Wiley: New York, NY, USA, 1994; pp. 163–238. [Google Scholar]
- Paldus, B.A.; Spence, T.G.; Zare, R.N.; Oomens, J.; Harren, F.J.M.; Parker, D.H.; Gmachl, C.; Cappasso, F.; Sivco, D.L.; Baillargeon, J.N.; et al. Photoacoustic spectroscopy using quantum-cascade lasers. Opt. Lett. 1999, 24, 178. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.; Di Franco, C.; Lugarà, P.; Scamarcio, G. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection. Sensors 2006, 6, 1411–1419. [Google Scholar] [CrossRef]
- Holthoff, E.; Bender, J.; Pellegrino, P.; Fisher, A. Quantum Cascade Laser-Based Photoacoustic Spectroscopy for Trace Vapor Detection and Molecular Discrimination. Sensors 2010, 10, 1986–2002. [Google Scholar] [CrossRef]
- Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef]
- Spagnolo, V.; Kosterev, A.A.; Dong, L.; Lewicki, R.; Tittel, F.K. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl. Phys. B 2010, 100, 125–130. [Google Scholar] [CrossRef]
- Chen, K.; Chen, Y.; Zhang, B.; Mei, L.; Guo, M.; Deng, H.; Liu, S.; Ma, F.; Gong, Z.; Yu, Q. Highly Sensitive Photoacoustic Microcavity Gas Sensor for Leak Detection. Sensors 2020, 20, 1164. [Google Scholar] [CrossRef]
- Grossel, A.; Zéninari, V.; Joly, L.; Parvitte, B.; Durry, G.; Courtois, D. New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers. Spectrochim. Acta Part A 2006, 63, 1021–1028. [Google Scholar] [CrossRef]
- Grossel, A.; Zéninari, V.; Parvitte, B.; Joly, L.; Courtois, D. Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: Application to the detection of methane and nitrous oxide. Appl. Phys. B Lasers Opt. 2007, 88, 483–492. [Google Scholar] [CrossRef]
- Grossel, A.; Zéninari, V.; Parvitte, B.; Joly, L.; Durry, G.; Courtois, D. Photoacoustic detection of nitric oxide with a Helmholtz resonant quantum cascade laser sensor. Infrared Phys. Technol. 2007, 51, 95–101. [Google Scholar] [CrossRef]
- Manne, J.; Jäger, W.; Tulip, J. Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques. Appl. Phys. B Lasers Opt. 2009, 94, 337–344. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Tittel, F.K.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Cho, A.Y. Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser. Appl. Opt. 2000, 39, 6866–6872. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, M.T.; Langford, N.; Duxbury, G. Real-time trace-level detection of carbon dioxide and ethylene in car exhaust gases. Appl. Opt. 2005, 44, 2887–2894. [Google Scholar] [CrossRef]
- Wang, L.; Sharples, T.R. Intrapulse quantum cascade laser spectroscopy: Pressure induced line broadening and shifting in the ν 6 band of formaldehyde. Appl. Phys. B 2012, 108, 427–435. [Google Scholar] [CrossRef]
- Grouiez, B.; Parvitte, B.; Joly, L.; Zéninari, V. Alternative method for gas detection using pulsed quantum cascade laser spectrometers. Opt. Lett. 2009, 34, 181–183. [Google Scholar] [CrossRef]
- Grouiez, B.; Zéninari, V.; Joly, L.; Parvitte, B. Pulsed quantum cascade laser spectroscopy with intermediate-size pulses: Application to NH3 in the 10 µm region. Appl. Phys. B 2010, 100, 265–273. [Google Scholar] [CrossRef]
- Lee, B.G.; Belkin, M.A.; Pflügl, C.; Diehl, L.; Zhang, H.A.; Audet, R.M.; MacArthur, J.; Bour, D.P.; Corzine, S.W.; Höfler, G.E.; et al. DFB Quantum Cascade Laser Arrays. IEEE J. Quantum Electron. 2009, 45, 564–565. [Google Scholar] [CrossRef]
- Lee, B.G.; Belkin, M.A.; Audet, R.; MacArthur, J.; Diehl, L.; Pflügl, C.; Capasso, F.; Oakley, D.C.; Chapman, D.; Napoleone, A.; et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 2007, 91, 231101. [Google Scholar] [CrossRef]
- Capasso, F. High-performance midinfrared quantum cascade lasers. Opt. Eng. 2010, 49, 111102. [Google Scholar] [CrossRef]
- Yan, F.-L.; Zhang, J.-C.; Jia, Z.-W.; Zhuo, N.; Zhai, S.-Q.; Liu, S.-M.; Liu, F.-Q.; Wang, Z.-G. High-power phase-locked quantum cascade laser array emitting at λ~4.6 μm. AIP Adv. 2016, 6, 035022. [Google Scholar] [CrossRef]
- Liao, C.-S.; Blanchard, R.; Pfluegl, C.; Azimi, M.; Huettig, F.; Vakhshoori, D. Portable broadband photoacoustic spectroscopy for trace gas detection by quantum cascade laser arrays. Opt. Lett. 2020, 45, 3248–3251. [Google Scholar] [CrossRef] [PubMed]
- Barritault, P.; Brun, M.; Labeye, P.; Hartmann, J.-M.; Boulila, F.; Carras, M.; Nicoletti, S. Design, fabrication and characterization of an AWG at 4.5 µm. Opt. Express 2015, 23, 26168–26181. [Google Scholar] [CrossRef] [PubMed]
- Bizet, L.; Vallon, R.; Parvitte, B.; Brun, M.; Maisons, G.; Carras, M.; Zéninari, V. Multi-gas sensing with quantum cascade laser array in the mid-infrared region. Appl. Phys. B 2017, 123, 145. [Google Scholar] [CrossRef]
- Hugi, A.; Maulini, R.; Faist, J. External cavity quantum cascade laser. Semicond. Sci. Technol. 2010, 25, 083001. [Google Scholar] [CrossRef]
- Mohan, A.; Wittmann, A.; Hugi, A.; Blaser, S.; Giovannini, M.; Faist, J. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt. Lett. 2007, 32, 2792–2794. [Google Scholar] [CrossRef] [PubMed]
- Pushkarsky, M.; Weida, M.; Day, T.; Arnone, D.; Pritchett, R.; Caffey, D.; Crivello, S. High-Power Tunable External Cavity Quantum Cascade Laser in the 5–11 Micron Regime; Clarkson, W.A., Hodgson, N., Shori, R.K., Eds.; International Society for Optics and Photonics: San Jose, CA, USA, 2008; p. 68711X. [Google Scholar]
- Wysocki, G.; Lewicki, R.; Curl, R.F.; Tittel, F.K.; Diehl, L.; Capasso, F.; Troccoli, M.; Hofler, G.; Bour, D.; Corzine, S.; et al. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Appl. Phys. B 2008, 92, 305–311. [Google Scholar] [CrossRef]
- Mammez, D.; Stoeffler, C.; Cousin, J.; Vallon, R.; Mammez, M.-H.; Joly, L.; Parvitte, B.; Zéninari, V. Photoacoustic gas sensing with a commercial external-cavity quantum cascade laser at 10.5 μm. Infrared Phys. Technol. 2013, 61, 14–19. [Google Scholar] [CrossRef]
- Mammez, D.; Vallon, R.; Parvitte, B.; Mammez, M.-H.; Carras, M.; Zéninari, V. Development of an external-cavity quantum cascade laser spectrometer at 7.5 µm and applications to gas detection. Appl. Phys. B 2014, 116, 951–958. [Google Scholar] [CrossRef]
- Gilmore, D.A.; Cvijin, P.V.; Atkinson, G.H. Intracavity absorption spectroscopy with a titanium: Sapphire laser. Opt. Commun. 1990, 77, 385–389. [Google Scholar] [CrossRef]
- Campargue, A.; Chenevier, M.; Stoeckel, F. Intracavity-laser-absorption spectroscopy of the visible overtone transition of methane in a supersonically cooled jet. Chem. Phys. Lett. 1991, 183, 153–157. [Google Scholar] [CrossRef]
- Baev, V.M.; Eschner, J.; Paeth, E.; Schüler, R.; Toschek, P.E. Intra-cavity spectroscopy with diode lasers. Appl. Phys. B 1992, 55, 463–477. [Google Scholar] [CrossRef]
- Belikova, T.P.; Sviridenkov, E.A.; Suchkov, A.F. Investigation of weak absorption and gain lines of some gases by the method of selective losses in a laser resonator. Sov. J. Quantum Electron. 1974, 4, 454–456. [Google Scholar] [CrossRef]
- Charvát, A.; Kachanov, A.A.; Campargue, A.; Permogorov, D.; Stoeckel, F. High sensitivity intracavity absorption spectroscopy of CHD3 in the near infrared with a titanium:sapphire laser. Chem. Phys. Lett. 1993, 214, 495–501. [Google Scholar] [CrossRef]
- Kachanov, A.; Charvat, A.; Stoeckel, F. Intracavity laser spectroscopy with vibronic solid-state lasers I Spectro temporal transient behavior of a Ti:sapphire laser. J. Opt. Soc. Am. B 1994, 11, 2412. [Google Scholar] [CrossRef]
- Harms, J.C.; O’Brien, L.C.; Ni, A.; Mahkdoom, B.; O’Brien, J.J. Near-infrared spectrum of ZrF by intracavity laser absorption spectroscopy. J. Mol. Spectrosc. 2015, 310, 68–71. [Google Scholar] [CrossRef]
- Mehdi, G.; Muravjov, A.V.; Saxena, H.; Fredricksen, C.J.; Brusentsova, T.; Peale, R.E.; Edwards, O. Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser. Proc. SPIE 2011, 8032, 80320E–80320E-7. [Google Scholar] [CrossRef]
- Wojtas, J.; Gluszek, A.; Hudzikowski, A.; Tittel, F.K. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy. Sensors 2017, 17, 513. [Google Scholar] [CrossRef]
- Phillips, M.C.; Taubman, M.S. Intracavity sensing via compliance voltage in an external cavity quantum cascade laser. Opt. Lett. 2012, 37, 2664–2666. [Google Scholar] [CrossRef]
- De Naurois, G.-M.; Carras, M.; Simozrag, B.; Patard, O.; Alexandre, F.; Marcadet, X. Coherent quantum cascade laser micro-stripe arrays. AIP Adv. 2011, 1, 032165. [Google Scholar] [CrossRef]
- Vallon, R.; Parvitte, B.; Bizet, L.; De Naurois, G.M.; Simozrag, B.; Maisons, G.; Carras, M.; Zéninari, V. External cavity coherent quantum cascade laser array. Infrared Phys. Technol. 2016, 76, 415–420. [Google Scholar] [CrossRef]
- Liu, C.-W.; Zhang, J.-C.; Yan, F.-L.; Jia, Z.-W.; Zhao, Z.-B.; Zhuo, N.; Liu, F.-Q.; Wang, Z.-G. External Cavity Tuning of Coherent Quantum Cascade Laser Array Emitting at ~7.6 μm. Chin. Phys. Lett. 2017, 34, 034209. [Google Scholar] [CrossRef]
- Lewicki, R.; Witinski, M.; Li, B.; Wysocki, G. Spectroscopic benzene detection using a broadband monolithic DFB-QCL array. Proc. SPIE—Int. Soc. Opt. Eng. 2016, 9767, 97671. [Google Scholar] [CrossRef]
- Zhou, W.; Bandyopadhyay, N.; Wu, D.; McClintock, R.; Razeghi, M. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design. Sci. Rep. 2016, 6, 25213. [Google Scholar] [CrossRef] [PubMed]
- From HITRAN Database. Available online: https://hitran.org/ (accessed on 3 March 2020).
- Pakhomycheva, L.; Sviridenkov, E.A.; Suchkov, A.F.; Titova, K.V.; Churilov, S.S. Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line. JETP Lett. 1970, 12, 43–45. [Google Scholar]
- Bizet, L. Spectrométrie Laser Avec Sources Moyen Infrarouge Largement Accordables et Application à la Détection de Gaz. Ph.D. Thesis, Reims University, Reims, France, 2019. [Google Scholar]
- From PNNL. Available online: https://www.pnnl.gov (accessed on 11 March 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zéninari, V.; Vallon, R.; Bizet, L.; Jacquemin, C.; Aoust, G.; Maisons, G.; Carras, M.; Parvitte, B. Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors. Sensors 2020, 20, 6650. https://doi.org/10.3390/s20226650
Zéninari V, Vallon R, Bizet L, Jacquemin C, Aoust G, Maisons G, Carras M, Parvitte B. Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors. Sensors. 2020; 20(22):6650. https://doi.org/10.3390/s20226650
Chicago/Turabian StyleZéninari, Virginie, Raphaël Vallon, Laurent Bizet, Clément Jacquemin, Guillaume Aoust, Grégory Maisons, Mathieu Carras, and Bertrand Parvitte. 2020. "Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors" Sensors 20, no. 22: 6650. https://doi.org/10.3390/s20226650
APA StyleZéninari, V., Vallon, R., Bizet, L., Jacquemin, C., Aoust, G., Maisons, G., Carras, M., & Parvitte, B. (2020). Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors. Sensors, 20(22), 6650. https://doi.org/10.3390/s20226650