Precise Topographic Model Assisted Slope Displacement Retrieval from Small Baseline Subsets Results: Case Study over a High and Steep Mining Slope
Abstract
:1. Introduction
2. Methodology
2.1. Small Baseline Subsets Analysis
2.2. Conversion from LOS Displacements to Slope Direction
3. Study Area and Data Collection
3.1. Geological and Hydrological Setting of the Study Area
3.2. Data Collection
4. Experimental Results Analysis
4.1. Displacement along Slope Direction
4.2. Comparison with Ground Measurements
4.3. Microseism Events on the Northwest Slope
5. Discussion on Impact Factors of the Slope Stability
5.1. Influence of the Geological Structure
5.2. Influence of Precipitation
5.3. Influence of Slope Aspects and Imaging Orbit
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lv, P. Comprehensive Analysis of High and Steep Slope Stability in Deep Open Pit Mine Based on Information Technology. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Fruneau, B.; Achace, J.; Delacourt, C. Observation and modeling of the Saint-Etienne-de Tine’e landslide using SAR interferometry. Tectonophysics 1996, 265, 181–190. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, L.; Tang, M.; Liao, M.; Xu, Q.; Gong, J. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sens. Environ. 2018, 205, 180–198. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1700. [Google Scholar] [CrossRef] [Green Version]
- Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Notti, D.; Davalillo, J.C.; Herrera, G.; Mora, O. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena valley case study. Nat. Hazards Earth Syst. Sci. 2010, 10, 1865–1875. [Google Scholar] [CrossRef]
- Prati, C.; Ferretti, A.; Perissin, D. Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J. Geodyn. 2010, 49, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Wasowski, J.; Nitti, D.O.; Nutricato, R.; Chiaradia, M.T. Using Cosmo/SkyMed X-band and ENVISAT C-band SAR interferometry for landslide analysis. Remote Sens. Environ. 2012, 119, 272–285. [Google Scholar] [CrossRef]
- Bovenga, F.; Nitti, D.O.; Fornaro, G.; Radicioni, F.; Stoppini, A.; Brigante, R. Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int. J. Remote Sens. 2013, 34, 4083–4104. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Confuorto, P.; Di Martire, D.; Centolanza, G.; Iglesias, R.; Mallorqui, J.J.; Novellino, A.; Plank, S.; Ramondini, M.; Thuro, K.; Calcaterra, D. Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sens. Environ. 2017, 188, 51–72. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Shi, X.; Liao, M.; Li, M.; Zhang, L.; Cunningham, C. Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: A case study of three gorges area, China. Remote Sens. 2016, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, C.; Vecchioli, F.; et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- Di Martire, D.; Paci, M.; Confuorto, P.; Costabile, S.; Guastaferro, F.; Verta, A.; Calcaterra, D. A nation-wide system for landslide mapping and risk management in Italy: The second not-ordinary plan of environmental remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 143–157. [Google Scholar] [CrossRef]
- Eriksen, H.Ø.; Lauknes, T.R.; Larsen, Y.; Corner, G.D.; Bergh, S.G.; Dehls, J.; Kierulf, H.P. Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR). Remote Sens. Environ. 2017, 191, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Gourmelen, N.; Kim, S.W.; Shepherd, A.; Park, J.W.; Sundal, A.V.; Björnsson, H.; Pálsson, F. Ice velocity determined using conventional and multiple-aperture InSAR. Earth Planet. Sci. Lett. 2011, 307, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.H.M.; Ge, L.; Zhang, K.; Li, X. Estimating horizontal and vertical movements due to underground mining using ALOS PALSAR. Eng. Geol. 2012, 143–144, 18–27. [Google Scholar] [CrossRef]
- Raucoules, D.; de Michele, M.; Malet, J.P.; Ulrich, P. Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR) application to La Valette landslide (South French Alps). Remote Sens. Environ. 2013, 139, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Zhang, L.; Zhou, C.; Li, M.; Liao, M. Retrieval of time series three-dimensional landslide surface displacements from multi-angular SAR observations. Landslides 2018, 15, 1015–1027. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Zhao, Z.; Zhong, X.; Liu, S.; Mao, Y.; Li, J. Analysis of mining waste dump site stability based on multiple remote sensing technologies. Remote Sens. 2018, 10, 2025. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Yang, T.; Zhou, J.; Deng, W.; Yu, Q.; Zhang, P.; Cheng, G. Spatial variability and time decay of rock mass mechanical parameters: A landslide study in the Dagushan open-pit mine. Rock Mech. Rock Eng. 2020, 53, 3031–3053. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Jin, X.G. Research of the key technologies for the high steep slope stability in Dagushan iron mine. Non-Ferrous Min. Metall. 2012, 28, 12–15. (In Chinese) [Google Scholar]
- Hu, Y.P. Study on Open Pit and Underground Collaborative Mining Scheme of DAgushan Iron Mine. Master’s Thesis, Northeastern University, Shenyang, China, 2015. (In Chinese). [Google Scholar]
- Suo, L.; Jiang, Z.; Kang, Z.Y. Study on reclamation technology of huanglingzi rock dump in Dagushan, Anshan City. Jiangxi Agric. J. 2008, 20, 95–97. (In Chinese) [Google Scholar]
- Li, J.C.; Li, J.Q.; Wen, J. Slope engineering of deep open pit mine in Dagushan Iron Mine. Nonferrous Met. Eng. 2004, 3, 86–89. (In Chinese) [Google Scholar]
- Huber, M.; Gruber, A.; Wendleder, A.; Wessel, B.; Roth, A.; Schmitt, A. The global Tandem-X DEM: Production status and first validation results. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 45–50. [Google Scholar] [CrossRef] [Green Version]
- The TanDEM-X 90m Digital Elevation Model. Available online: https://geoservice.dlr.de/web/dataguide/tdm90/ (accessed on 31 October 2018).
- Lebert, F.; Bernardie, S.; Mainsant, G. Hydroacoustic monitoring of a salt cavity: An analysis of precursory events of the collapse. Nat. Hazards Earth Syst. Sci. 2011, 11, 2663–2675. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.H.; Tang, C.A.; Tang, L.X.; Zhang, W.D.; Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II hydropower station. Tunn. Undergr. Sp. Technol. 2015, 49, 345–368. [Google Scholar] [CrossRef]
- Zhou, J.R.; Yang, T.H.; Zhang, P.H.; Xu, T.; Wei, J. Formation process and mechanism of seepage channels around grout curtain from microseismic monitoring: A case study of Zhangmatun iron mine, China. Eng. Geol. 2017, 226, 301–315. [Google Scholar] [CrossRef]
- Wang, S.W.; Zhang, X.J.; Song, Y.J. Safety factor analysis and prevention suggestions of slope stability in open pit mine. Open Pit Min. Technol. 2011, 3, 21–23. (In Chinese) [Google Scholar]
- Wang, Z.H.; Liu, H.Y.; Hong, L. Cause analysis and treatment suggestions of slope failure in deep open pit mine. Min. Eng. 2008, 5, 23–24. (In Chinese) [Google Scholar]
- Liu, Z.Z.; Fa, L.T.; Ma, N.; Li, H. Influence of hydraulic characteristics of fracture zone on slope stability of Dagushan Iron Mine. Metal. Mine 2012, 7, 56–58. (In Chinese) [Google Scholar]
Sensor | Orbit Path | Number of Images | Temporal Coverage | Orbit Direction | Heading (°) | Incidence Angle (°) |
---|---|---|---|---|---|---|
Sentinel-1A | 25 | 28 | 5 June 2017–19 May 2018 | Ascending | −13.539 | 33.726 |
Sentinel-1B | 105 | 29 | 4 June 2017–18 May 2018 | Descending | −166.421 | 43.890 |
Point ID | Accumulative Displacement | RMSE Ascending | Percentage Ascending | RMSE Descending | Percentage Descending |
---|---|---|---|---|---|
P1 | −314.2 | 39.6 | 12.6% | 28.9 | 9.2% |
P2 | −284.6 | 37.2 | 13.1% | 15.3 | 5.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Feng, Q.; Liu, F.; Mao, Y.; Liu, S.; Yang, T.; Tolomei, C.; Bignami, C.; Wu, L. Precise Topographic Model Assisted Slope Displacement Retrieval from Small Baseline Subsets Results: Case Study over a High and Steep Mining Slope. Sensors 2020, 20, 6674. https://doi.org/10.3390/s20226674
Wei L, Feng Q, Liu F, Mao Y, Liu S, Yang T, Tolomei C, Bignami C, Wu L. Precise Topographic Model Assisted Slope Displacement Retrieval from Small Baseline Subsets Results: Case Study over a High and Steep Mining Slope. Sensors. 2020; 20(22):6674. https://doi.org/10.3390/s20226674
Chicago/Turabian StyleWei, Lianhuan, Qiuyue Feng, Feiyue Liu, Yachun Mao, Shanjun Liu, Tianhong Yang, Cristiano Tolomei, Christian Bignami, and Lixin Wu. 2020. "Precise Topographic Model Assisted Slope Displacement Retrieval from Small Baseline Subsets Results: Case Study over a High and Steep Mining Slope" Sensors 20, no. 22: 6674. https://doi.org/10.3390/s20226674
APA StyleWei, L., Feng, Q., Liu, F., Mao, Y., Liu, S., Yang, T., Tolomei, C., Bignami, C., & Wu, L. (2020). Precise Topographic Model Assisted Slope Displacement Retrieval from Small Baseline Subsets Results: Case Study over a High and Steep Mining Slope. Sensors, 20(22), 6674. https://doi.org/10.3390/s20226674