A New and All-Solid-State Potentiometric Aluminium Ion Sensor for Water Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentations
2.3. Preparation and Deposition of Poly(2-hydroxylethyl methacrylate) (pHEMA) and Ion-Selective Poly(n-butyl acrylate) (pBA) Membrane
2.3.1. Preparation of Aluminium Ion Sensor
2.3.2. Preparation of Potassium Ion Sensor (Pseudo-Reference Electrode)
2.3.3. Evaluation of the Potassium Ion Sensor
2.4. Assessment of the All-Solid-State Aluminium Ion Sensor System
2.4.1. Potentiometric Measurements
2.4.2. Optimization of the Performance of the All-Solid-State Aluminium Ion Detection System
2.4.3. Application for Aluminium Ion Analysis in Water Samples from the Treatment Plant
3. Results and Discussions
3.1. Performances Assessment of Potassium Ion Sensor for Pseudo-Reference Construction
3.2. The Performance of the All-Solid-State Aluminium Ion Analytical System
3.2.1. Effect of Concentrations of KNO3
3.2.2. pH Effect
3.2.3. Reversibility, Repeatability, and Reproducibility
3.2.4. Stability
3.2.5. Limit of Detection and Response Time
3.2.6. Selectivity
3.2.7. Shelf Life
3.2.8. Application in Real Samples
3.2.9. Comparison with Conventional Aluminium Ion Detection Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.F.; Mokhtar, M.; Alam, L.; Mohamed, C.A.R.; Ta, G.C. Non-carcinogenic health risk assessment of aluminium ingestion via drinking water in Malaysia. Expo. Health 2019, 11, 167–180. [Google Scholar] [CrossRef]
- Yang, M.; Tan, L.; Xu, Y.; Zhao, Y.; Cheng, F.; Ye, S. Effect of low pH and aluminium toxicity on the photosynthetic characteristics of different fast-growing eucalyptus vegetatively propagated clones. PLoS ONE 2015, 10, e0130963. [Google Scholar]
- Ismail, N.I.; Sheikh, A.S.R.; Idris, M.; Hasan, A.H.; Halmi, M.I.E.; Hussin, A.S.N.; Hamed, J.O.; Sanusi, S.N.A.; Hashim, M.H. Accumulation of Fe-Al by Scirpus grossus grown in synthetic bauxite mining wastewater and identification of resistant rhizobacteria. Environ. Eng. Sci. 2016, 34, 367–375. [Google Scholar] [CrossRef]
- Qin, J.C.; Cheng, X.Y.; Fang, R.; Wang, M.F.; Yang, Z.Y.; Li, T.R.; Li, Y. Two Schiff-base fluorescent sensors for selective sensing of aluminium (III): Experimental and computational studies. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2016, 152, 352–357. [Google Scholar] [CrossRef]
- Habs, H.; Simon, B.; Thiedemann, K.U.; Howe, P. Aluminium; World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 194): Geneva, Switzerland, 1997; p. 10. [Google Scholar]
- Fawell, J.K. Aluminium in Drinking-Water; World Health Organization: Geneva, Switzerland, 2010; pp. 11–12. [Google Scholar]
- Gordon, B.; Callan, P.; Vickers, C.; Tritscher, A.; Perez, M.; Zaim, M.; Jamie, B.; Bos, R. Guideline for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; pp. 311–313. [Google Scholar]
- Couto, R.; Lima, J.; Quinaz, M. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2015, 146, 801–814. [Google Scholar] [CrossRef]
- Kook, S.Y.; Lee, Y.H.; Izzaty, H.N.; Aishah, H.S. A new copper ionophore N1, N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophtalamide for potentiometric sensor. Sains Malays. 2018, 47, 2657–2666. [Google Scholar] [CrossRef]
- Rius-ruiz, F.X.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Riu, J.; Rius, F.X. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal. Bioanal. Chem. 2011, 399, 3613–3622. [Google Scholar] [CrossRef] [Green Version]
- Alva, S. Fabrication of all-solid-state Potentiometric ion Sensors and Biosensor Based on Screen-Printed Electrodes and Photocurable Methacrylic-Acrylic Films. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi Selangor, Malaysia, 2008. [Google Scholar]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Rius-Ruiz, F.X.; Bejarano-Nosas, D.; Blondeau, P.; Riu, J.; Rius, F.X. Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. Anal. Chem. 2011, 83, 5783–5788. [Google Scholar] [CrossRef]
- Hu, J.; Ho, K.T.; Zou, X.U.; Smyrl, W.H.; Stein, A.; Bühlmann, P. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices. Anal. Chem. 2015, 87, 2981–2987. [Google Scholar] [CrossRef]
- Simonis, A.; Lüth, H.; Wang, J.; Schöning, M.J. New concepts of miniaturized reference electrodes in silicon technology for potentiometric sensor systems. Sens. Actuators B Chem. 2004, 103, 429–435. [Google Scholar] [CrossRef]
- Kisiel, A.; Marcisz, H.; Michalska, A.; Maksymiuk, K. All-solid-state reference electrodes based on conducting polymers. Analyst 2005, 130, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, A.; Michalska, A.; Maksymiuk, K. Plastic reference electrodes and plastic potentiometric cells with dispersion cast poly(3,4-ethylene dioxythiophene) and poly(vinyl chloride) based membranes. Bioelectrochemistry 2007, 71, 75–80. [Google Scholar] [CrossRef]
- Cicmil, D.; Anastasova, S.; Kavanagh, A.; Diamond, D.; Mattinen, U.; Bobacka, J. Ionic liquid-based, liquid-junction-free reference electrode. Electroanalysis 2011, 23, 1881–1890. [Google Scholar] [CrossRef]
- Polk, B.J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sens. Actuators B Chem. 2006, 114, 239–247. [Google Scholar] [CrossRef]
- Alva, S.; Binti Abdul Aziz, A.S.; Bin Syono, M.I.; Bin Wan Jamil, W.A. Ag/AgCl reference electrode based on thin-film of Arabic gum membrane. Indones. J. Chem. 2018, 18, 479–485. [Google Scholar] [CrossRef]
- Mamińska, R.; Dybko, A.; Wróblewski, W. All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sens. Actuators B Chem. 2006, 115, 552–557. [Google Scholar]
- Yusoff, I.I.; Rohani, R.; Mohammad, A.W. Pressure driven conducting polymer membranes derived from layer by layer formation and characterization: A review. J. Eng. Sci. Technol. 2016, 11, 1183–1206. [Google Scholar]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; De Rooij, N.F.; Pretsch, E. Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S.K. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. Int. J. Energy Res. 2019, 43, 2756–2794. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Mohamad, A.B. Study of the plasticizing effect on polymer and its development in fuel cell application. Renew. Sustain. Energy Rev. 2017, 79, 794–805. [Google Scholar] [CrossRef]
- Kook, S.Y.; Lee, Y.H. A screen-printed copper ion sensor with photocurable poly(n-butyl acrylate) membrane-based on ionophore o-xylylene bis(N,N-diisobutyl dithiocarbamate). Malays. J. Anal. Sci. 2017, 21, 1–12. [Google Scholar]
- Yew, P.L.; Heng, L.Y. A reflectometric ion sensor for potassium-based on acrylic microspheres. Sens Actuators B Chem. 2014, 191, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Lindfors, T.; Sundfors, F.; Hçfler, L.; Gyurcsµnyi, E. The water uptake of plasticized poly(vinyl chloride) solid-contact calcium-selective electrodes. Electroanalysis 2011, 23, 2156–2163. [Google Scholar] [CrossRef] [Green Version]
- Alva, S.; Lee, Y.H.; Musa, A. Optimization of screen printed reference electrode based on charge balance and poly(butyl acrylate) photocurable membrane. Int. J. Innov. Mech. Eng. Adv. Mater. 2016, 2, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Paananen, A.; Mikkola, R.; Sareneva, T.; Matikainen, S.; Andersson, M.; Julkunen, I.; Salkinoja-Salonen, M.S.; Timonen, T. Inhibition of human NK cell function by valinomycin, a toxin from Streptomyces griseus in indoor air. Infect. Immun. 2000, 68, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Kook, S.Y. Potentiometric ion Sensor Based on a New Bis-Thiourea Compound in Aluminium Determination. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2019. [Google Scholar]
- Cotruvo, J.; Fawell, J.K.; Giddings, M.; Magara, Y.; Aiwerasia, V.F.N.; Ohanian, E. Potassium in Drinking Water; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Lee, Y.H.; Hall, E.A.H. Assessing a photocured self-plasticized acrylic membrane recipe for Na+ and K+ ion-selective electrodes. Anal. Chim. Acta 2001, 443, 25–40. [Google Scholar]
- Kook, S.Y.; Ngah, F.A.A.; Sapari, S.; Lee, Y.H.; Hasbullah, S.A. Complexation study of bis-thiourea compound with aluminium ion as ionophore for development of potentiometric ion sensor. Sains Malays. 2019, 48, 2649–2661. [Google Scholar] [CrossRef]
- Abosadiya, H.; Hasbullah, S.A.; Yamin, B. Synthesis, characterization and X-ray structure of N-(4- bromobutanoyl-N΄-(2-3-and 4-methyl phenyl)thiourea. Chin. J. Struct. Chem. 2015, 34, 379–385. [Google Scholar]
- Alva, S.; Lee, Y.H.; Musa, A. A new lithium ion-selective sensors based on self plasticizing acrylic films and disposable screen-printed electrode. In Proceedings of the Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research, Kuala Lumpur, Malaysia, 5–7 September 2005; pp. 48–51. [Google Scholar] [CrossRef]
- Alva, S.; Lee, Y.H.; Musa, A. Screen-printed potassium ion sensor fabricated from photocurable and self-plasticized acrylic film. J. Phys. Ther. Sci. 2006, 17, 141–150. [Google Scholar]
- Juliana, J. Synthesis, Its Application Studies as Ionophore and Anti-Bacterial Test of Some Bis-carbonoylthiourea Derivatives. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2013. [Google Scholar]
- Umezawa, Y.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes. Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Buck, R.P.; Lindneri, E.R.N. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Richard, J.H.; Doris, H.C.; Joan, D.G.; Walter, M.; Malden, C.N. Recommended Dietary Allowances, 10th ed.; National Academy of Sciences: Washington, DC, USA, 1989. [Google Scholar]
- Ghanei-motlagh, M.; Fayazi, M.; Taher, M.A. On the potentiometric response of mercury(II) membrane sensors based on symmetrical thiourea derivatives—Experimental and theoretical approaches. Sens. Actuators B Chem. 2014, 199, 133–141. [Google Scholar] [CrossRef]
- Zhang, W.; Fakler, A.; Demuth, C.; Spichiger, U.E. Comparison of different methods for determining the selectivity coefficient using a magnesium-selective electrode. Anal. Chim. Acta 1998, 375, 211–222. [Google Scholar] [CrossRef]
- Ulianas, A. The Effect of Membrane Composition Changes and Internal Electrolytes on the Response of the Potassium Ion Sensor. Master’s Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2007. [Google Scholar]
- Yew, P.L.; Syono, M.I.; Lee, Y.H. A Solid-state Potassium Ion Sensor From Acrylic Membrane Deposited on ISFET Device. Malaysian J. Chem. 2009, 11, 64–72. [Google Scholar]
- Grygolowicz-pawlak, E.; Plachecka, K.; Brzozka, Z.; Malinowska, E. Further studies on the role of redox-active monolayer as intermediate phase of solid-state sensors. Sens. Actuators B Chem. 2007, 123, 480–487. [Google Scholar] [CrossRef]
- Suah, F.B.M.; Ahmad, M.; Heng, L.Y. Highly sensitive fluorescence optode for aluminium(III) based on non-plasticized polymer inclusion membrane. Sens. Actuators B Chem. 2014, 201, 490–495. [Google Scholar] [CrossRef]
- Alva, S.; Aziz, A.; Syono, M.I.; Sebayang, D. Development of solid-state reference electrode based on sodium polyanethol sulfonate immobilized on cellulose acetate. J. Phys. Sci. 2017, 28, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Safari, S.; Selvaganapathy, P.R.; Deen, M.J. Microfluidic reference electrode with free-diffusion liquid junction. J. Electrochem. Soc. 2013, 160, 177–183. [Google Scholar] [CrossRef]
- Heng, L.Y.; Hall, E.A.H. Taking the plasticizer out of methacrylic-acrylic membranes for K+-selective electrodes. Electroanalysis 2000, 12, 187–193. [Google Scholar] [CrossRef]
- Alegret, S.; Merkoci, A. Electrochemical Sensor Analysis, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 33–34. [Google Scholar]
- Mizani, F.; Ardabili, S.S.; Ganjaliab, M.R.; Faridbod, F.; Payehghadr, M.; Azmoodeh, M. Design, and construction of new potentiometric sensors for determination of Al3+ ion based on (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl)hydrazine. Mater. Sci. Eng. C 2015, 49, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.F.; Arvand-Barmchi, M.; Zanjanchi, M.A. Al(III)-selective electrode based on furil as neutral carrier. Electroanalysis 2001, 13, 1125–1128. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, H.; Xu, C.; Wen, X.; Gu, B. Preparation of a new aluminium (III) selective electrode based on a hydrazone-containing benzimidazole derivative as a neutral carrier. J. Mol. Liq. 2014, 190, 185–189. [Google Scholar] [CrossRef]
- Khairi. New Thiourea Compounds as Ionophores for Potentiometric Sensors of H2PO4− and Hg2+. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2016. [Google Scholar]
- Ali, T.A.; Farag, A.A.; Mohamed, G.G. Potentiometric determination of iron in polluted water samples using new modified Fe(III)-screen printed ion-selective electrode. J. Ind. Eng. Chem. 2014, 20, 2394–2400. [Google Scholar] [CrossRef]
- Tajik, S.; Taher, M.A.; Sheikhshoaie, I. Potentiometric determination of trace amounts of aluminium utilizing polyvinyl chloride membrane and coated platinum sensors based on E-N’-(2-hydroxy-3-methoxybenzylidene)benzohydrazide. J. AOAC Int. 2013, 96, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Deviant, S. The Practically Cheating Statistics Handbook, 2nd ed.; Createspace Independent Publishing Platform: Scotts Valley, CA, USA, 2011; pp. 110–115. [Google Scholar]
- Krzywinski, M.; Altman, N. Points of significance: Significance, P values and t-tests. Nat. Methods 2013, 10, 1041–1042. [Google Scholar] [CrossRef] [Green Version]
- Ngarisan, N.I.; Ngah, C.W.Z.C.W.; Ahmad, M.; Bambang, K. Optimization of polymer inclusion membranes (PIMs) preparation for immobilization of chrome azurol S for optical sensing of aluminium (III). Sens. Actuators B. Chem. 2014, 203, 465–470. [Google Scholar] [CrossRef]
- Faridbod, F.; Ganjali, M.R.; Dinarvand, R.; Norouzi, P. The fabrication of potentiometric membrane sensors and their applications. Arf. J. Biotechnol. 2007, 6, 2960–2987. [Google Scholar]
- Bera, R.K.; Sahoo, S.K.; Mittal, S.K.; Kumar, A.S.K. An imidazol based novel potentiometric PVC membrane sensor for aluminium (III) determination. Int. J. Electrochem. Sci. 2010, 5, 29–38. [Google Scholar]
- Li, Y.; Chai, Y.; Yuan, R.; Liang, W.; Zhang, L.; Ye, G. Aluminium(III)-selective electrode based on a newly synthesized glyoxal-bis-thiosemicarbazone schiff base. J. Anal. Chem. 2008, 63, 1090–1093. [Google Scholar] [CrossRef]
Types of Metal Ions (Mn+) | |
---|---|
Average ± SD (n = 3) | |
Ca2+ | 3.60 ± 0.15 |
Mg2+ | −3.61 ± 0.28 |
Cd2+ | −3.40 ± 0.26 |
Al3+ | −3.70 ± 0.23 |
Ni2+ | −3.45 ± 0.16 |
Pb2+ | −3.33 ± 0.28 |
Cu2+ | −3.16 ± 0.14 |
Zn2+ | −3.33 ± 0.23 |
Hg2+ | −3.33 ± 0.28 |
Na+ | −3.04 ± 0.03 |
Fe3+ | −3.06 ± 0.04 |
Type of Parameter | This Work | [32] | [11] | [44] |
---|---|---|---|---|
Slope (mV/decade) | 56.58 ± 0.06 | 59.00 ± 0.60 | 56.10 ± 0.17 | 52.21 |
Linear Range (M) | 10−5–10−1 | 10−5–10−1 | 10−5–10−1 | 10−6–10−1 |
Logarithm Selectivity Coefficient (SSM) | Na+ (−3.04 ± 0.03) Ca2+ (−3.60 ± 0.15) Mg2+ (−3.61 ± 0.28) | Na+ (−3.80 ± 0.05) Ca2+ (−4.90 ± 0.05) Mg2+ (–4.60 ± 0.05) | Na+ (−3.00 ± 0.06) Ca2+ (−4.50 ± 0.06) Mg2+ (−4.50 ± 0.09) | Na+ (−3.47) Ca2+ (−3.62) Mg2+ (−3.73) |
Reversibility Repeatability Reproducibility (RSD%) | 0.76 0.15 0.11 | - - 1.00 | - 0.32 0.30 | - - - |
Types of Solid-State Reference Electrodes | Components of Reference Membrane | Stability (mV/hour) | Duration of Stability Study (h) | References |
---|---|---|---|---|
Potassium ion sensor pBA-pHEMA-Ag/AgCl SPE | Potassium ionophore I and KTClPB | 0.20 ± 0.02 | 10 | This work |
pBA-single-walled carbon nanotubes/octadecylami-ne-SPE based on ink 7102 conductor paste | Tetradodecylammonium tetrakis-(4-chlorophenyl)- borate, KCl and AgCl | 0.90 ± 0.20 | 10 | [13] |
pBA-single walled carbon nanotubes/octadecylami-ne-glassy carbon rod | Tetradodecylammonium tetrakis-(4-chlorophenyl) borate, KCl and AgCl | −1.10 ± 0.10 | 12 | [10] |
pBA-Ag/AgCl SPE | Sodium tetrakis [3,5-bis(trifloromethyl)- phenyl]borate and trioctylmethyl ammonium chloride | 0.97 ± 0.04 | 5 | [29] |
Cellulose acetate-polypyrrole-carbon SPE | Sodium polyanethole sulfonate | <0.40 | 60 | [48] |
Cellulose acetate/Arabic gum-Ag/AgCl-SPE | - | 0.57 | 72 | [20] |
Type of Solutions | [KNO3], M | Slope (mV/Decade) ± SD, n = 3, (Al3+) | Linear Range (M Al3+) | R2 |
---|---|---|---|---|
A | 0.500 | 9.59 ± 0.68 | 10−7–10−4 | 0.982 |
B | 0.250 | 14.88 ± 0.11 | 10−6–10−4 | 0.999 |
C | 0.100 | 10.40 ± 0.36 | 10−6–10−2 | 0.999 |
D | 0.075 | 15.70 ± 0.26 | 10−6–10−4 | 0.997 |
E | 0.050 | 17.70 ± 0.13 | 10−6–10−2 | 0.989 |
F | 0.025 | 17.31 ± 0.26 | 10−6–10−3 | 0.998 |
G | 0.010 | 15.76 ± 0.64 | 10−5–10−2 | 0.996 |
H | 0.005 | 12.43 ± 0.15 | 10−5–10−2 | 0.997 |
I | 0.001 | 12.41 ± 0.32 | 10−6–10−4 | 0.993 |
Types of Metal Ions | |
---|---|
Average ± SD (n = 3) | |
Ca2+ | −3.42 ± 0.18 |
Mg2+ | −4.04 ± 0.08 |
K+ | −3.31 ± 0.23 |
Na+ | −3.31 ± 0.19 |
Fe3+ | −3.82 ± 0.11 |
Types of Water Treatment Samples | The Concentration of Aluminium Ions | t-test | |
---|---|---|---|
Conventional System: Double Junction Conventional Ag/AgCl Reference Electrode (ppm ± SD), n = 3 [33] | All-Solid-State Aluminium Ion Sensor System with a Pseudo- Reference Electrode (Potassium Ion Sensor) (ppm ± SD), n = 3 | ||
1 | 0.026 ± 0.003 | 0.027 ± 0.002 | −1.000 |
2 | 0.049 ± 0.005 | 0.043 ± 0.008 | 2.449 |
3 | 0.064 ± 0.012 | 0.059 ± 0.007 | 0.520 |
4 | 0.022 ± 0.001 | 0.021 ± 0.002 | 0.655 |
Parameters | Types of Aluminium Ion Detection System | |||
---|---|---|---|---|
Types of Reference Electrodes | All-Solid-State Aluminium Ion Sensor System with a Pseudo-Reference Electrode (Potassium Ion Sensor) | Conventional Double Liquid Junction Conventional Ag/AgCl Reference Electrode [31] | Conventional Saturated Caromel Electrode Hg/Hg2Cl2/KCl [62] | Conventional Saturated Caromel Electrode Hg/Hg2Cl2/KCl [63] |
Types of aluminium ionophore and matrix | 1,1′-[(methylazanediyl)-bis-(ethane-2,1-diyl)]bis-[3-(naphthalen-1-yl)-thiourea] ACH, pBA membrane | 1,1′-[(methylazane-diyl)-bis-(ethane-2,1-diyl)]bis[3-(naphtha-len-1-yl)thiourea] ACH, pBA membrane | 2-(4,5-dihydro-1,3- imidazol-2-yl)phe-nol, PVC membrane | Glyoxal-bis-thiose-micarbazone schiff base, PVC membrane |
Linear range (M Al3+) | 1.0 × 10−6 –1.0 × 10−2 | 1.0 × 10−6–1.0 × 10−1 | 1.0 × 10−6–1.0 × 10−1 | 1.8 × 10–5–1.0 × 10–1 |
Slope (mV/decade) | 17.70 ± 0.13 | 18.67 ± 0.56 | 19.30 | 20.10 |
Limit of detection (M Al3+) | 2.45 × 10−7 | 8.07 × 10−7 | 7.00 × 10−7 | 8.70 × 10–6 |
Response time (s) | <50 | 35–50 | 10 | 10–15 |
Stability (mV/h) | 0.33 ± 0.01 | 0.41 ± 0.02 | - | - |
Reversibility Repeatability Reproducibility (%) | 1.63 1.02 0.73 | 3.77 1.22 2.99 | - - - | - - - |
Shelf life (Days) | 49 | 63 | 120 | 30 |
Types of Reference Electrodes | All-Solid-State Aluminium Ion Sensor System with a Pseudo-Reference Electrode (Potassium Ion Sensor) | Conventional System Double Junction Conventional Ag/AgCl Reference Electrode [31] | Conventional Saturated Caromel Electrode Hg/Hg2Cl2/KCl [62] | Conventional Saturated Caromel Electrode Hg/Hg2Cl2/KCl [63] |
---|---|---|---|---|
Types of aluminium ionophore and matrix | 1,1′-[(methylazanediyl)-bis-(ethane-2,1-diyl)]-bis-[3-(naphthalen-1-yl)thiourea] ACH, pBA membrane | 1,1′-[(methylazane-diyl)-bis-(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)-thiourea] ACH, pBA membrane | 2-(4,5-dihydro-1,3- imidazol-2-yl)- phenol, PVC membrane | Glyoxal-bis-thio- semicarbazone Schiff base, PVC membrane |
Ca2+ | −3.42 ± 0.18 | 3.76 ± 0.17 | −2.46 | - |
Mg2+ | −4.04 ± 0.08 | −4.36 ± 0.22 | −2.57 | −1.31 |
K+ | −3.31 ± 0.19 | −3.44 ± 0.15 | −3.18 | −2.46 |
Na+ | −3.31 ± 0.23 | −3.45 ± 0.08 | −3.17 | −2.26 |
Fe3+ | −3.82 ± 0.11 | −4.00 ± 0.04 | −2.61 | −1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, K.S.; Heng, L.Y.; Hassan, N.I.; Hasbullah, S.A. A New and All-Solid-State Potentiometric Aluminium Ion Sensor for Water Analysis. Sensors 2020, 20, 6898. https://doi.org/10.3390/s20236898
Ying KS, Heng LY, Hassan NI, Hasbullah SA. A New and All-Solid-State Potentiometric Aluminium Ion Sensor for Water Analysis. Sensors. 2020; 20(23):6898. https://doi.org/10.3390/s20236898
Chicago/Turabian StyleYing, Kook Shih, Lee Yook Heng, Nurul Izzaty Hassan, and Siti Aishah Hasbullah. 2020. "A New and All-Solid-State Potentiometric Aluminium Ion Sensor for Water Analysis" Sensors 20, no. 23: 6898. https://doi.org/10.3390/s20236898
APA StyleYing, K. S., Heng, L. Y., Hassan, N. I., & Hasbullah, S. A. (2020). A New and All-Solid-State Potentiometric Aluminium Ion Sensor for Water Analysis. Sensors, 20(23), 6898. https://doi.org/10.3390/s20236898