Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment
Abstract
:1. Introduction
1.1. Wireless Sensor Network (WSN) and Internet of Things (IoT) Technologies
1.2. Examples of Wearable WSN and IoT Devices to Monitor and Reduce Hazards in the Work Environment
1.3. Bluetooth and Wi-Fi Wireless Communication Technologies
1.4. The Metrics of Thermal Effects of EMF Exposure and Evaluation
1.5. The Aim
2. Materials and Methods
2.1. Numerical Model of EMF Source and Its Validation
2.2. Human Body Numerical Model
2.3. Exposure Scenarios
2.4. Numerical Simulations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vermesan, O.; Friess, P. Digitising the Industry. Internet of Things Connecting the Physical, Digital and Virtual Worlds; River Publishers: Gistrup, Denmark, 2016. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, V. The Building Environment: Active and Passive Control Systems, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-471-68965-2. [Google Scholar]
- Zeiler, W.; van Houten, M.A.; Boxem, G.; Maaijen, H.N.; Vissers, D.R. Indoor air quality and thermal comfort strategies: The human-in-the-loop approach. In Proceedings of the International Conference for Enhanced Building (ICEBO 2011), New York, NY, USA, 18–20 October 2011; pp. 1–10. [Google Scholar]
- Yang, S.-H. Wireless Sensor Networks: Principles, Design and Applications, 1st ed.; Springer: London, UK, 2014; ISBN 978-1447169321. [Google Scholar]
- Carranza, N.; Ramos, V.; Lizana, F.G.; García, J.; del Pozo, A.; Monteagudo, J.L. A Literature Review of Transmission Effectiveness and Electromagnetic Compatibility in Home Telemedicine Environments to Evaluate Safety and Security. Telemed. J. E-Health 2010, 16, 530–541. [Google Scholar] [CrossRef]
- Carranza, N.; Febles, V.; Hernández, J.A.; Bardasano, J.L.; Monteagudo, J.L.; Fernández de Aldecoa, J.C.; Ramos, V. Patient Safety and Electromagnetic Protection: A Review. Health Phys. 2011, 100, 530–541. [Google Scholar] [CrossRef]
- Dickerson, R.F.; Gorlin, E.I.; Stankovic, J.A. Empath: A continuous remote emotional health monitoring system for depressive illness. In Proceedings of the WH ‘11: 2nd Conference on Wireless Health, San Diego, CA, USA, 10–13 October 2011; pp. 1–20. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R.; Garcia, N.M.; Pombo, N. Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics 2019, 8, 1081. [Google Scholar] [CrossRef] [Green Version]
- Reiner, J.; Sullivan, M. RFID in Healthcare: A Panacea for the Regulations and Issues Affecting the Industry? UPS Supply Chain Solutions White Paper; United Parcel Service of America: Alpharetta, GA, USA, 2005. [Google Scholar]
- Hebert, M.A.; Korabek, B.; Scott, R.E. Moving research into practice: A decision framework for integrating home telehealth into chronic illness care. Int. J. Med. Inform. 2006, 75, 786–794. [Google Scholar] [CrossRef]
- Gondalia, A.; Dixit, D.; Parashar, S.; Raghava, V.; Sengupta, A.; Sarobin, V.R. IoT-based Healthcare Monitoring System for War Soldiers using Machine Learning. Procedia Comput. Sci. 2018, 133, 1005–1013. [Google Scholar] [CrossRef]
- Hanson, M.A.; Powell, H.C., Jr.; Barth, A.T.; Ringgenberg, K.; Calhoun, B.H.; Aylor, J.H.; Lach, J. Body area sensors networks: Challenges and opportunities. Computer 2009, 42, 58–65. [Google Scholar] [CrossRef]
- Zheng, J.; Simplot-Ryl, D.; Bisdikian, C.; Mouftah, H.T. The Internet of things [Guest Editorial]. IEEE Commun. Mag. 2011, 49, 30–31. [Google Scholar] [CrossRef]
- Ramos, V.; Trillo, A.M.; Suarez, O.J.; Suarez, S.; Febles, V.M.; Rabassa, L.E.; Karpowicz, J.; Frenandez-Aldecoa, J.C.; Hernandez, J.A. Electromagnetic Characterization for UHF-RFID Fixed based reader in Smart healthcare environments. In Proceedings of the 2020 International Symposium on Electromagnetic Compatibility—EMC EUROPE (Virtual Conference), Rome, Italy, 23–25 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Morzyński, L. Wireless Sensor Networks. In Occupational Noise and Workplace Acoustics—Advances in Measurement and Assessment Techniques; Pleban, D., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 83–121. [Google Scholar]
- Morzyński, L. IoT-based system for monitoring and limiting exposure to noise, vibration and other harmful factors in the working environment. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise19, Madrid, Spain, 16–19 June 2019; Institute of Noise Control Engineering: Reston, VA, USA, 2019; pp. 4734–4739. [Google Scholar]
- Morzyński, L.; Młyński, R.; Kozłowski, E. Koncepcja systemu ostrzegania pracowników stosujących ochronniki słuchu przed zbliżającym się pojazdem [Concept of the system warning hearing protectors-using employees against the approaching vehicle]. Bezpieczeństwo Pracy Nauka Praktyka 2020, 582, 16–19. [Google Scholar] [CrossRef]
- European Telecommunications Standards Institute (ETSI) EN 300 328 v2.2.2 (2019-07). Wideband Transmission Systems; Data Transmission Equipment Operating in the 2,4 GHz Band; Harmonised Standard for Access to Radio Spectrum; ETSI: Sophia-Antipolis, France, 2019. [Google Scholar]
- European Telecommunications Standards Institute (ETSI) EN 301 893 V2.1.1 (2017-05). 5 GHz RLAN; Harmonised Standard Covering the Essential Requirements of Article 3.2 of Directive 2014/53/EU; ETSI: Sophia-Antipolis, France, 2017. [Google Scholar]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields; IARC Press: Lyon, France, 2013; Volume 102, Available online: http://monographs.iarc.fr/ENG/Monographs/vol102/mono102.pdf (accessed on 18 November 2020).
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Opinion on Potential Health Effects of Exposure to Electromagnetic Fields (EMF); European Commission: Luxembourg, 2015; Available online: http://ec.europa.eu/health/sites/health/files/scientific_committees/emerging/docs/scenihr_o_041.pdf (accessed on 18 November 2020).
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, Magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz; IEEE: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.-K.; Kim, H.-G.; Kim, K.-B.; Kim, H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol. Ther. 2019, 27, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, D.A. High Frequency Electromagnetic Dosimetry; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Wust, P.; Kortüm, B.; Strauss, U.; Nadobny, J.; Zschaeck, S.; Beck, M.; Stein, U.; Ghadjar, P. Non-thermal effects of radiofrequency electromagnetic fields. Sci. Rep. 2020, 10, 13488. [Google Scholar] [CrossRef] [PubMed]
- Jalilian, H.; Eeftens, M.; Ziaei, M.; Röösli, M. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. Environ. Res. 2016, 176, 108517. [Google Scholar] [CrossRef] [PubMed]
- Leach, V.; Weller, S.; Redmayne, M. A novel database of bio-effects from non-ionizing Radiation. Rev. Environ. Health 2018, 33, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC) and repealing Directive 2004/40/EC. Off. J. Eur. Union 2013, L 179/1, 1–21.
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Kamarudin, M.R.; Alomainy, A.; Abd-Alhameed, R.A.; Kosha, J.S.; Noras, J.M. Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications. IEEE Access 2018, 6, 77529–77541. [Google Scholar] [CrossRef]
- Flores-Cuadras, J.R.; Medina-Monroy, J.L.; Chavez-Perez, R.A.; Lobato-Morales, H. Novel ultra-wideband flexible antenna for wearable wrist worn devices with 4G LTE communications. Microw. Opt. Technol. Lett. 2017, 59, 777–783. [Google Scholar] [CrossRef]
- Zradziński, P. Evaluation of the inter-person variability of hazards to the users of BAHA hearing implants caused by exposure to a low frequency magnetic field. Int. J. Radiat. Biol. 2018, 94, 918–925. [Google Scholar] [CrossRef]
- Zradziński, P.; Karpowicz, J.; Gryz, K.; Leszko, W. Evaluation of hazards caused by magnetic field emitted from magnetotherapy applicator to the users of bone conduction hearing prostheses. Med. Pr. 2017, 68, 469–477. [Google Scholar] [CrossRef]
- Gedliczka, A. Atlas Miar Człowieka–Dane Do Projektowania i Oceny Ergonomicznej [Atlas of Human Body Measures–Data Sheets for Ergonomic and Evaluation]; Central Institute for Labour Protection: Warszawa, Poland, 2001; ISBN 83-88703-38-2. [Google Scholar]
- Hasgall, P.A.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters Of Biological Tissues. Version 4.0. 2018. Available online: https://itis.swiss/virtual-population/tissue-properties/downloads/database-v4-0/ (accessed on 18 November 2020).
- International Electrotechnical Commission (IEC) 62232-2017. Determination of RF Field Strength and SAR in the Vicinity of Radiocommunication Base Stations for the Purpose of Evaluating Human Exposure; IEC: Geneva, Switzerland, 2017. [Google Scholar]
- International Electrotechnical Commission (IEC)/Institute of Electrical and Electronics Engineers (IEEE) 62704-1:2017. Determining the Peak Spatial-Average Specific Ab-Sorption Rate (SAR) in the Human Body from Wireless Communications Devices, 30 MHz to 6 GHz—Part 1: General Requirements for Using the Finite-Difference Time-Domain (FDTD) Method for SAR Calculations; IEC: Geneva, Switzerland, 2017. [Google Scholar]
- European Committee for Electrotechnical Standardization (CENELEC) EN 50413:2008. Basic Standard on Measurement and Calculation Procedures for Human Exposure to Electric, Magnetic and Electromagnetic Fields (0 Hz–300 GHz); CENELEC: Brussels, Belgium, 2008. [Google Scholar]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Low-Profile Dual-Band Textile Antenna with Artificial Magnetic Conductor Plane. IEEE Trans. Antennas Propag. 2014, 62, 6487–6490. [Google Scholar] [CrossRef]
- Chow, Y.L.; Tsang, K.F.; Wong, C.N. An accurate method to measure the antenna impedance of a portable radio. Microw. Opt. Technol. Lett. 1999, 23, 349–352. [Google Scholar] [CrossRef]
- Saario, S.A.; Lu, J.W.; Thiel, D.V. Full-wave analysis of choking characteristics of sleeve balun on coaxial cables. Electron. Lett. 2002, 38, 304–305. [Google Scholar] [CrossRef] [Green Version]
- European Telecommunications Standards Institute (ETSI) TS 136 101 V15.9.0 (2020-02). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 Version 15.9.0 Release 15); ETSI: Sophia-Antipolis, France, 2020. [Google Scholar]
- Zradziński, P.; Karpowicz, J.; Gryz, K.; Morzyński, L.; Młyński, R.; Swidziński, A.; Godziszewski, K.; Ramos, V. Modelling the Influence of the 2.4 GHz Electromagnetic Field on the User of a Wearable Internet of Things (IoT) Device for Monitoring Hazards in the Work Environment. Eng. Proc. 2020, 2, 39. [Google Scholar] [CrossRef]
Tissue | Dimensions, (1) mm | Layer Thickness, mm | Density, kg/m3 | Electric Conductivity, S/m | Relative Permittivity |
---|---|---|---|---|---|
skin | 238 × 159 × 190 | 4 | 1209 | 1.464 | 38.0 |
fat | 230 × 151 × 182 | 2 | 911 | 0.268 | 10.8 |
bone | 226 × 147 × 178 | 9 | 1908 | 0.394 | 11.4 |
brain | 208 × 129 × 160 | inner volume | 1045 | 1.808 | 48.9 |
Exposure Scenario | WHSAR, (1) W/kg | SAR10g, (2) W/kg | EIRP, (3) mW |
---|---|---|---|
RF module on the headband | 0.035 | 4.0 | 6.1 |
RF module on the helmet | 0.005 | 0.4 | 350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zradziński, P.; Karpowicz, J.; Gryz, K.; Morzyński, L.; Młyński, R.; Swidziński, A.; Godziszewski, K.; Ramos, V. Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment. Sensors 2020, 20, 7131. https://doi.org/10.3390/s20247131
Zradziński P, Karpowicz J, Gryz K, Morzyński L, Młyński R, Swidziński A, Godziszewski K, Ramos V. Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment. Sensors. 2020; 20(24):7131. https://doi.org/10.3390/s20247131
Chicago/Turabian StyleZradziński, Patryk, Jolanta Karpowicz, Krzysztof Gryz, Leszek Morzyński, Rafał Młyński, Adam Swidziński, Konrad Godziszewski, and Victoria Ramos. 2020. "Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment" Sensors 20, no. 24: 7131. https://doi.org/10.3390/s20247131
APA StyleZradziński, P., Karpowicz, J., Gryz, K., Morzyński, L., Młyński, R., Swidziński, A., Godziszewski, K., & Ramos, V. (2020). Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment. Sensors, 20(24), 7131. https://doi.org/10.3390/s20247131