A Wide-Range and Calibration-Free Spectrometer Which Combines Wavelength Modulation and Direct Absorption Spectroscopy with Cavity Ringdown Spectroscopy
Abstract
:1. Introduction
2. Experimental Systems
3. Methods
3.1. WM-DAS
3.2. CW-CRDS
3.3. Calibration-Free Baseline Ringdown Time
4. Analysis and Verification of the Measuring Range of the Proposed Spectrometer
5. Results and Discussion of the Wide Range and Calibration-Free Technique
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adámek, P.; Olejníček, J.; Čada, M.; Kment, Š.; Hubička, Z. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma. Opt. Lett. 2013, 38, 2428–2430. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. 2017, 60, 132–176. [Google Scholar] [CrossRef] [Green Version]
- Witzel, O.; Klein, A.; Meffert, C.; Schulz, C.; Kaiser, S.A.; Ebert, V. Calibration-free, high-speed, in-cylinder laser absorption sensor for cycle-resolved, absolute H2O measurements in a production IC engine. Proc. Combust. Inst. 2015, 35, 3653–3661. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S. Wood E Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 2010, 49, 111124. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S.; Jervis, D.; Agnese, M.; McGovern, R.; Yacovitch, T.I.; Roscioli, J.R. Recent progress in laser-based trace gas instruments: Performance and noise analysis. Appl. Phys. B 2015, 119, 203–218. [Google Scholar] [CrossRef]
- Zhao, G.; Tan, W.; Jia, M.; Hou, J.; Ma, W.; Dong, L.; Zhang, L.; Feng, X.; Wu, X.; Yin, W.; et al. Intensity-stabilized fast-scanned direct absorption spectroscopy instrumentation based on a distributed feedback laser with detection sensitivity down to 4 × 10−6. Sensors 2016, 16, 1544. [Google Scholar] [CrossRef] [Green Version]
- Wojtas, J.; Mikolajczyk, J.; Bielecki, Z. Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection. Sensors 2013, 13, 7570–7598. [Google Scholar] [CrossRef] [Green Version]
- Arslanov, D.D.; Cristescu, S.M.; Harren, F.J.M. Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing. Opt. Lett. 2010, 35, 3300–3302. [Google Scholar] [CrossRef] [Green Version]
- Moyer, E.J.; Sayres, D.S.; Engel, G.S.; St. Clair, J.M.; Keutsch, F.N.; Allen, N.T.; Kroll, J.H.; Anderson, J.G. Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Appl. Phys. B 2008, 92, 467–474. [Google Scholar] [CrossRef]
- Romanini, D.; Kachanov, A.A.; Sadeghi, N.; Stoeckel, F. CW cavity ring down spectroscopy. Chem. Phys. Lett. 1997, 264, 316–322. [Google Scholar] [CrossRef]
- Bucher, C.R.; Lehmann, K.K.; Plusquellic, D.F.; Fraser, G.T. Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ring down spectroscopy. Appl. Opt. 2000, 39, 3154–3164. [Google Scholar] [CrossRef] [PubMed]
- Dudek, J.B.; Tarsa, P.B.; Velasquez, A.; Wladyslawski, M.; Rabinowitz, P.; Lehmann, K.K. Trace moisture detection using continuous-wave cavity ring-down spectroscopy. Anal. Chem. 2003, 75, 4599–4605. [Google Scholar] [CrossRef] [PubMed]
- Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P. Long-term greenhouse gas measurements from aircraft. Atmos. Meas. Tech. 2013, 6, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Klein, M.; Kathrotia, T.; Riedel, U.; Kissel, T.; Dreizler, A.; Ebert, V. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS. Appl. Phys. B 2012, 109, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Diemel, O.; Honza, R.; Ding, C.P.; Böhm, B.; Wagner, S. In situ sensor for cycle-resolved measurement of temperature and mole fractions in IC engine exhaust gases. Proc. Combust. Inst. 2019, 37, 1453–1460. [Google Scholar] [CrossRef]
- Gianella, M.; Reuter, S.; Press, S.A.; Schmidt-Bleker, A.; van Helden, J.H.; Ritchie, G.A.D. HO2 reaction kinetics in an atmospheric pressure plasma jet determined by cavity ring-down spectroscopy. Plasma Sources Sci. Technol. 2018, 27, 095013. [Google Scholar] [CrossRef]
- Long, D.A.; Fleisher, A.J.; Liu, Q.; Hodges, J.T. Ultra-sensitive cavity ring down spectroscopy in the mid-infrared spectral region. Opt. Lett. 2016, 41, 1612–1615. [Google Scholar] [CrossRef] [Green Version]
- Karhu, J.; Lehmann, K.; Vainio, M.; Metsälä, M.; Halonen, L. Step-modulated decay cavity ring-down detection for double resonance spectroscopy. Opt. Express 2018, 26, 29086–29098. [Google Scholar] [CrossRef]
- McHale, L.E.; Hecobian, A.; Yalin, A.P. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air. Opt. Express 2016, 24, 5523–5535. [Google Scholar] [CrossRef]
- Robert, C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths. Appl. Opt. 2007, 46, 5408–5418. [Google Scholar] [CrossRef]
- Pal, M.; Maity, A.; Pradhan, M. A continuous-wave quantum cascade laser near 7.5 μm combined with 2f-wavelength modulation spectroscopy for trace monitoring of ambient CH4 concentrations. Laser Phys. 2018, 28, 105702. [Google Scholar] [CrossRef]
- Kostinek, J.; Roiger, A.; Davis, K.J.; Sweeney, C.; DiGangi, J.P.; Choi, Y.; Baier, B.; Hase, F.; Groß, J.; Eckl, M.; et al. Adaptation and performance assessment of a quantum and interband cascade laser spectrometer for simultaneous airborne in situ observation of CH4, C2H6, CO2, CO and N2O. Atmos. Meas. Tech. 2019, 12, 1767–1783. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.; Johnstone, W.; Bain, J.; Ruxton, K.; Duffin, K. Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-part 1: Theoretical analysis. J. Lightwave Technol. 2011, 29, 811–821. [Google Scholar]
- Peng, Z.M.; Ding, Y.J.; Jia, J.W.; Lan, L.J.; Du, Y.J.; Li, Z. First harmonic with wavelength modulation spectroscopy to measure integrated absorbance under low absorption. Opt. Express 2013, 21, 23724–23735. [Google Scholar]
- Lan, L.J.; Ding, Y.J.; Peng, Z.M.; Du, Y.J.; Liu, Y.F.; Li, Z. Multi-harmonic measurements of line shape under low absorption conditions. Appl. Phys. B 2014, 117, 543–547. [Google Scholar] [CrossRef]
- Klein, A.; Witzel, O.; Ebert, V. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy. Sensors 2014, 14, 21497–21513. [Google Scholar] [CrossRef] [Green Version]
- Womack, C.C.; Neuman, J.A.; Veres, P.R.; Eilerman, S.J.; Brock, C.A.; Decker, Z.C.J.; Zarzana, K.J.; Dube, W.P.; Wild, R.J.; Wooldridge, P.J.; et al. Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species. Atmos. Meas. Tech. 2017, 10, 1911–1926. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Hua, R.Z.; Xie, P.H.; Wang, H.C.; Lu, K.D.; Wang, D. Intercomparison of in situ CRDS and CEAS for measurements of atmospheric N2O5 in Beijing, China. Sci. Total Environ. 2018, 613–614, 131–139. [Google Scholar] [CrossRef]
- Du, Y.J.; Peng, Z.M.; Ding, Y.J. Wavelength modulation spectroscopy for recovering absolute absorbance. Opt. Express 2018, 26, 9263–9272. [Google Scholar] [CrossRef]
- Li, J.D.; Du, Y.J.; Peng, Z.M.; Ding, Y.J. Measurements of spectroscopic parameters of CO2 transitions for Voigt, Rautian, galatry and speed-dependent voigt profiles near 1.43 μm using the WM-DAS method. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 197–205. [Google Scholar] [CrossRef]
- Du, Y.J.; Peng, Z.M.; Ding, Y.J. High-accuracy sinewave-scanned direct absorption spectroscopy. Opt. Express 2018, 26, 29550–29560. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.S.; Moyer, E.J. Precise multipass Herriott cell design: Derivation of controlling design equations. Opt. Lett. 2007, 32, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Mazurenka, M.; Wada, R.; Shillings, A.J.L.; Butler, T.J.A.; Beames, J.M.; Orr-Ewing, A.J. Fast Fourier transform analysis in cavity ring-down spectroscopy: Application to an optical detector for atmospheric NO2. Appl. Phys. B 2005, 81, 135–141. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Hanson, R.K. Diode-laser measurements of linestrength and temperature-dependent lineshape parameters for H2O transitions near 1.4μm using Voigt, Rautian, Galatry, and speed-dependent Voigt profiles. J. Quant. Spectrosc. Radiat. Transf. 2015, 152, 127–139. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt. 2011, 50, A74–A85. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of Atomic Frequency Standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Reed, Z.D.; Hodges, J.T. Line shape parameters of helium-broadened 12C16O transitions in the 3→0 overtone band near 1.57 μm. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 300–308. [Google Scholar] [CrossRef]
- Ngo, N.H.; Lin, H.; Hodges, J.T.; Trand, H. Spectral shapes of rovibrational lines of CO broadened by He, Ar, Kr and SF6: A test case of the Hartmann-Tran profile. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.D.; Gao, G.Z.; Chen, W.D.; Liu, G.; Gao, X.M. Simultaneous Measurements of CO2 and CO Using a Single Distributed-Feedback (DFB) Diode Laser Near 1.57 μm at Elevated Temperatures. Appl. Spectrosc. 2011, 65, 108–112. [Google Scholar] [CrossRef]
- Li, J.S.; Deng, H.; Sun, J.; Yu, B.L.; Fischer, H. Simultaneous atmospheric CO, N2O and H2O detection using a singlequantum cascade laser sensor based on dual-spectroscopy techniques. Sensor Actuat. B Chem. 2016, 231, 723–732. [Google Scholar] [CrossRef]
XCO [ppm] | τmeas [μs] | τ0,meas [μs] | Xmeas [ppm] | τ0,calc [μs] | Xcalc [ppm] | RE [10−6] |
---|---|---|---|---|---|---|
10,900 | 1.12 | 64.75 | 10,909.55 | 64.74 | 10,909.52 | 2.75 |
3650 | 3.22 | 64.74 | 3652.02 | 3652.02 | 0.00 | |
1010 | 10.28 | 64.75 | 1011.14 | 1011.12 | 19.78 | |
360 | 22.45 | 64.73 | 359.31 | 359.34 | 83.49 | |
101 | 42.34 | 64.74 | 100.90 | 100.92 | 198.02 | |
25 | 57.68 | 64.75 | 25.12 | 25.11 | 398.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Du, Y.; Ding, Y.; Peng, Z. A Wide-Range and Calibration-Free Spectrometer Which Combines Wavelength Modulation and Direct Absorption Spectroscopy with Cavity Ringdown Spectroscopy. Sensors 2020, 20, 585. https://doi.org/10.3390/s20030585
Wang Z, Du Y, Ding Y, Peng Z. A Wide-Range and Calibration-Free Spectrometer Which Combines Wavelength Modulation and Direct Absorption Spectroscopy with Cavity Ringdown Spectroscopy. Sensors. 2020; 20(3):585. https://doi.org/10.3390/s20030585
Chicago/Turabian StyleWang, Zhen, Yanjun Du, Yanjun Ding, and Zhimin Peng. 2020. "A Wide-Range and Calibration-Free Spectrometer Which Combines Wavelength Modulation and Direct Absorption Spectroscopy with Cavity Ringdown Spectroscopy" Sensors 20, no. 3: 585. https://doi.org/10.3390/s20030585
APA StyleWang, Z., Du, Y., Ding, Y., & Peng, Z. (2020). A Wide-Range and Calibration-Free Spectrometer Which Combines Wavelength Modulation and Direct Absorption Spectroscopy with Cavity Ringdown Spectroscopy. Sensors, 20(3), 585. https://doi.org/10.3390/s20030585