Evaluation of Silica Nanofluids in Static and Dynamic Conditions by an Optical Fiber Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamentals
2.2. Sample Preparation
2.3. Optical Fiber Sensor
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009, 196, 89–101. [Google Scholar] [CrossRef]
- Chen, G.; Yu, W.; Singh, D.; Cookson, D.; Routbort, J. Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. J. Nanoparticle Res. 2008, 10, 1109–1114. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Matsudo, H.; Nakagawa, T.; Kubota, Y.; Gonda, K.; Ohuchi, N. In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles. J. Sol Gel Sci. Technol. 2013, 66, 31–37. [Google Scholar] [CrossRef]
- Taylor, R.A.; Otanicar, T.P.; Herukerrupu, Y.; Bremond, F.; Rosengarten, G.; Hawkes, E.R.; Jiang, X.; Coulombe, S. Feasibility of nanofluid-based optical filters. Appl. Opt. 2013, 52, 1413–1422. [Google Scholar] [CrossRef]
- Nilsson, G.E.; Tenland, T.; ÅkeÖberg, P. Evaluation of a lased Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. Bio Med. Eng. 1980, BME-27, 597–604. [Google Scholar] [CrossRef]
- Chen, Z.; Milner, T.E.; Dave, D.; Nelson, J.S. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 1997, 22, 64–66. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla-Carvajal, M.X.; Camacho-Díaz, B.H.; Meraz-Torres, L.S.; Chanona-Pérez, J.J.; Alamilla-Beltrán, L.; Jimenéz-Aparicio, A.; Gutiérrez-López, G.F. Nanoencapsulation: A new trend in food engineering processing. Food Eng. Rev. 2010, 2, 39–50. [Google Scholar] [CrossRef]
- Fan, L.; Xu, N.; Wang, Z.; Shi, H. PDA experiments and CFD simulation of a lab-scale oxidation ditch with surface aerators. Chem. Eng. Res. Des. 2010, 88, 23–33. [Google Scholar] [CrossRef]
- Leung, A.B.; Suh, K.I.; Ansari, R.R. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl. Opt. 2006, 45, 2186–2190. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2008-2012). Anal. Chem. 2013, 85, 487–508. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Wiese, H.; Horn, D. Singlemode fibers in fiberoptic quasielastic light scattering: A study of the dynamics of concentrated latex dispersions. J. Chem. Phys. 1991, 94, 6429. [Google Scholar] [CrossRef]
- Sadasivan, S.; Rasmussen, D.H. Compact fiber optic dynamic light scattering system. J. Colloid Interf. Sci. 1997, 193, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.L.; Butera, R.J.; Hanus, L.H.; Wagner, N.J. Fundamentals of aggregation in concentrated dispersions: Fiber-optic quasielastic light scattering and linear viscoelastic measurements. Faraday Discuss. 2003, 123, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.C.P.; Gomes, M.K.; Schenkel, E.A.; Rodrigues, M.S.; Suzuki, C.K.; La Torre, L.G.; Fujiwara, E. Evaluation of silica nanoparticles colloidal stability with fiber optic quasi-elastic light scattering sensor. Braz. J. Chem. Eng. 2019, 36, 1519–1534. [Google Scholar] [CrossRef] [Green Version]
- Hauptmann, P.; Lucklum, R.; Püttmer, A.; Henning, B. Ultrasonic sensors for process monitoring and chemical analysis: State-of-the-art and trends. Sens. Actuators A 1998, 67, 32–48. [Google Scholar] [CrossRef]
- Enoksson, P.; Stemme, G.; Stemme, E. A silicon resonant sensor structure for Coriolis mass-flow measurements. J. Microelectromech. Syst. 1997, 6, 119–125. [Google Scholar] [CrossRef]
- McCabe, W.L.; Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering, 5th ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Finsy, R. Particle Sizing by Quasi-Elastic Light Scattering. Adv. Coll. Interf. Sci. 1994, 52, 79–143. [Google Scholar] [CrossRef]
- Welty, J.; Wicks, C.; Wilson, R.; Rorrer, G. Fundamentals of Momentum, Heat, and Mass Transfer, 5th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Chowdhury, D.P.; Sorensen, C.M.; Taylor, T.W.; Merklin, J.F.; Lester, T.W. Application of photon correlation spectrocopy to flowing Brownian motion systems. Appl. Opt. 1984, 23, 4149–4154. [Google Scholar] [CrossRef]
- Saleh, B.; Teich, M. Fundamentals of Photonics, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering with Applications to Chemistry, Biology and Physics; John Wiley and Sons: Hoboken, NJ, USA, 1976. [Google Scholar]
- Hunter, R.J. Foundations of Colloid Science, 2nd ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Koppel, D.E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J. Chem. Phys. 1972, 57, 4814–4820. [Google Scholar] [CrossRef]
- Murata, H. Recent developments in vapor phase axial deposition. J. Light. Technol. 1986, 4, 1026–1033. [Google Scholar] [CrossRef]
- Santos, J.S.; Ono, E.; Fujiwara, E.; Manfrim, T.P.; Suzuki, C.K. Control of optical properties of silica glass synthesized by VAD method for photonic components. Opt. Mater. 2011, 33, 1879–1883. [Google Scholar] [CrossRef]
- Soares, M.C.P.; Mendes, B.F.; Schenkel, E.A.; Santos, M.F.M.; Fujiwara, E.; Suzuki, C.K. Kinetic and thermodynamic study in pozzolanic chemical systems as an alternative for Chapelle test. Mat. Res. 2018, 21, e20180131. [Google Scholar] [CrossRef]
- Soares, M.C.P.; Vit, F.F.; Suzuki, C.K.; De la Torre, L.G.; Fujiwara, E. Perfusion Microfermentor Integrated into a Fiber Optic Quasi-Elastic Light Scattering Sensor for Fast Screening of Microbial Growth Parameters. Sensors 2019, 19, 2493. [Google Scholar] [CrossRef] [Green Version]
- Foust, A.S.; Wenzel, L.A.; Clump, C.W.; Maus, L.; Andersen, L.B. Principles of Unit Operations, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Weiss, N.; Van Leeuwen, T.G.; Kalkman, J. Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography. Phys. Rev. E 2013, 88, 042312. [Google Scholar] [CrossRef] [Green Version]
- Setiono, R. Feedforward Neural Network Construction Using Cross Validation. Neural Comput. 2006, 13, 2865–2877. [Google Scholar] [CrossRef]
- Cipelletti, L.; Weitz, D.A. Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator. Rev. Sci. Instrum. 1999, 70, 3214–3220. [Google Scholar] [CrossRef] [Green Version]
- Kohavi, R.; Li, C.-H. Oblivious Decision Trees, Graphs, and Top-Down Pruning. Proc. 14th Int. Joint Conf. Art. Intell. (IJCAI-95) 1995, 2, 1071–1077. [Google Scholar]
- Carr, R.J.G. Fibre optic sensors for the characterization of particle size and flow velocity. Sens. Actuators A 1990, 23, 1111–1117. [Google Scholar] [CrossRef]
Symbol | Meaning | Units |
---|---|---|
I(t) | Light Intensity Detected in a Given Instant | − |
t | Time | s |
DAB | Diffusion Coefficient | cm²⋅s−1 or m²⋅s−1 |
u | Flow Velocity | cm⋅s−1 |
w | Light Source Beam Radius | cm |
G2 | Autocorrelation Function of I(t) | − |
τ | Arbitrary Delay Time | s |
α and β | Fitting Parameters | − |
Γm | Decay Rate of the Autocorrelation | s−1 |
q | Magnitude of the Light Scattering Vector | cm−1 |
k | Boltzmann Constant | m²⋅kg⋅s−2⋅K−1 |
T | Temperature | K |
a | Average Diameter of Particles | m |
μB | Dynamic Viscosity of the Fluid | kg⋅m−1⋅s−1 |
G1 | Field Autocorrelation Function of IR | − |
K2, K3, … | Moments of Distribution of Decay Rates | s−2, s−3, … |
Pe | Peclet Number | − |
L | Characteristic Length of the Flow | cm |
IR | Reference Light Intensity | − |
c | Coupling Coefficient | − |
nc | Refractive Index of the Fiber Core | − |
ns | Refractive Index of the Sample | − |
h(t) | Height from the Bottom to the Clarified Zone | cm |
hi | Initial Value of h(t) | cm |
Ci | Initial Concentration of Nanoparticles | g⋅L−1 or % (mass per mass) |
C(t) | Instant Concentration of Nanoparticles | g⋅L−1 or % (mass per mass) |
σ | Standard Deviation of the Collected Signals | − |
μ | Mean Value of the Collected Signals | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
César Prado Soares, M.; Santos Rodrigues, M.; Alexandre Schenkel, E.; Perli, G.; Hideak Arita Silva, W.; Kauê Gomes, M.; Fujiwara, E.; Kenichi Suzuki, C. Evaluation of Silica Nanofluids in Static and Dynamic Conditions by an Optical Fiber Sensor. Sensors 2020, 20, 707. https://doi.org/10.3390/s20030707
César Prado Soares M, Santos Rodrigues M, Alexandre Schenkel E, Perli G, Hideak Arita Silva W, Kauê Gomes M, Fujiwara E, Kenichi Suzuki C. Evaluation of Silica Nanofluids in Static and Dynamic Conditions by an Optical Fiber Sensor. Sensors. 2020; 20(3):707. https://doi.org/10.3390/s20030707
Chicago/Turabian StyleCésar Prado Soares, Marco, Matheus Santos Rodrigues, Egont Alexandre Schenkel, Gabriel Perli, Willian Hideak Arita Silva, Matheus Kauê Gomes, Eric Fujiwara, and Carlos Kenichi Suzuki. 2020. "Evaluation of Silica Nanofluids in Static and Dynamic Conditions by an Optical Fiber Sensor" Sensors 20, no. 3: 707. https://doi.org/10.3390/s20030707
APA StyleCésar Prado Soares, M., Santos Rodrigues, M., Alexandre Schenkel, E., Perli, G., Hideak Arita Silva, W., Kauê Gomes, M., Fujiwara, E., & Kenichi Suzuki, C. (2020). Evaluation of Silica Nanofluids in Static and Dynamic Conditions by an Optical Fiber Sensor. Sensors, 20(3), 707. https://doi.org/10.3390/s20030707