Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.1.1. Data Collection in Laboratory Physical Model
2.1.2. Study Area and Data Collection in Field Survey
2.2. Alpha Shapes (AS) Algorithm
2.3. Hill Climbing-Region Growing (HC-RG) Algorithm
3. Results and Discussion
3.1. Laboratory Physical Model
3.1.1. Pebbles Deposit
3.1.2. Gravels Deposit
3.1.3. Mixture of Pebbles and Gravels Deposit
3.2. In-Situ Field Survey in Landslide Region
3.2.1. Upper Part of Landslide Accumulation
3.2.2. Lower Part of Landslide Accumulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orwin, J.; Clague, J.; Gerath, R. The Cheam rock avalanche, FraserValley, British Columbia, Canada. Landslide 2004, 1, 289–298. [Google Scholar] [CrossRef]
- Wang, F.W.; Cheng, Q.G.; Highland, L.; Miyajima, M.; Wang, H.B.; Yan, C.G. Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 2009, 6, 47–54. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Li, W.L.; Liang, J.T. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull. Eng. Geol. Environ. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.M.; Wasowski, J.; Juang, C.H. Geohazards in the three Gorges Reservoir Area, China-Lessons learned from decades of research. Eng. Geol. 2019, 261, 10526. [Google Scholar] [CrossRef]
- Crosta, G.; Imposimato, S.; Roddeman, D. Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng. Geol. 2008, 109, 135–145. [Google Scholar] [CrossRef]
- Ni, H.Y.; Zheng, W.M.; Liu, X.L.; Gao, Y.C. Fractal-statistical analysis of grain-size distributions of debris-flow deposits and its geological implications. Landslides 2011, 8, 253–259. [Google Scholar] [CrossRef]
- Hewitt, K. Catastrophic landslide deposits in the Karakoram Himalaya. Science 1988, 242, 64–67. [Google Scholar] [CrossRef]
- Kulatilake, P.; Hudaverdi, T.; Wu, Q. New prediction models for mean particle size in rock blast fragmentation. Geotech. Geol. Eng. 2012, 30, 665–684. [Google Scholar] [CrossRef]
- Meddah, M.S.; Zitouni, S.; Belâabes, S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr. Build. Mater. 2010, 24, 505–512. [Google Scholar] [CrossRef]
- Taallah, B.; Guettala, A.; Guettala, S.; Kriker, A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr. Build. Mater. 2014, 59, 161–168. [Google Scholar] [CrossRef]
- Bluck, B.J. Structure of gravel beaches and their relationship to tidal range. Sedimentology 2011, 58, 994–1006. [Google Scholar] [CrossRef]
- Van Aswegen, C.V.B.; Cunningham, H. The estimation of fragmentation in blast muckpiles by means of standard photographs. J. S. Afr. Inst. Min. Metall. 1986, 86, 469–474. [Google Scholar]
- Sim, Y.J.; Cho, G.; Song, K. Prediction of Fragmentation Zone Induced by Blasting in Rock. Rock Mech. Rock Eng. 2017, 50, 2177–2192. [Google Scholar] [CrossRef]
- Taboada, T.; Cortizas, A.M.; García, C.; García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 2006, 131, 218–236. [Google Scholar] [CrossRef]
- Kemeny, J.M.; Devgan, A.; Hagaman, R.M.; Wu, X.Q. Analysis of rock fragmentation using digital image processing. J. Geotech. Eng. 1993, 119, 1144–1160. [Google Scholar] [CrossRef]
- Hardy, A.J.; Kemeny, J.M. Block size distribution of rock masses using digital image processing of drill core. Int. J. Rock Mech. Min. Sci. 1997, 34, 303–307. [Google Scholar] [CrossRef]
- El-Hakim, S.F.; Brenner, C.; Roth, G. A multi-sensor approach to creating accurate virtual environments. J. Photogramm. Remote Sens. 1998, 53, 379–391. [Google Scholar] [CrossRef]
- Strouth, A.; Burk, R.L.; Eberhardt, E. The Afternoon Creek rockslide near Newhalem Washington. Landslides 2006, 3, 175–17922. [Google Scholar] [CrossRef]
- Franceschi, M.; Teza, G.; Preto, N.; Pesci, A.; Galgaro, A.; Girardi, S. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2009, 64, 522–528. [Google Scholar] [CrossRef]
- Spreafico, M.C.; Francioni, M.; Ceriv, F.; Stead, D.; Bitelli, G.; Ghirotti, M.; Borgatti, L. Back Analysis of the 2014 San Leo Landslide Using Combined Terrestrial Laser Scanning and 3D Distinct Element Modelling. Rock Mech. Rock Eng. 2016, 49, 2235–2251. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.J.; Haralick, R.M.; Shapiro, L.G. Morphologic edge detection. IEEE J. Robot. Autom. 1987, 3, 142–156. [Google Scholar] [CrossRef]
- Rubin, D.M. A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment. J. Sediment. Res. 2004, 74, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Buscombe, D.; Rubin, D.M.; Warrick, J.A. A universal approximation of grain size from images of noncohesive sediment. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Valéria, P.M.F.; Kanehisa, R.F.A.; Braz, G.; Aristófanes, C.S.; Paiva, A.C.D. Lung nodule classification based on shape distributions. In Proceedings of the 31st Annual ACM Symposium, Pisa, Italy, 4–8 April 2016. [Google Scholar] [CrossRef]
- Leng, X.X.; Xiao, J.; Wang, Y. A multi-scale plane-detection method based on the Hough transform and region growing. Photogramm. Rec. 2016, 31, 166–192. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Xia, D.; Wang, L.Q.; Zhao, B.B.; Teaway, J.W. Automated measurements of discontinuity geometric properties from a 3d-point cloud based on a modified region growing algorithm. Eng. Geol. 2018, 242, 44–54. [Google Scholar] [CrossRef]
- Teichmann, M.; Capps, M. Surface reconstruction with anisotropic density-scaled alpha shapes. Vis. IEEE 1998. [Google Scholar] [CrossRef] [Green Version]
- Vöge, M.; Lato, M.J.; Diederichs, M.S. Automated rockmass discontinuity mapping from 3-dimensional surface data. Eng. Geol. 2013, 164, 155–162. [Google Scholar] [CrossRef]
- Cagnoli, B.; Romano, G.P. Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: Experimental results. J. Volcanol. Geotherm. Res. 2010, 196, 236–244. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Casagli, N. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.P.; Wang, W.P.; Zhang, N.; Yan, J.K.; Wei, Y.J. The June 2017 Maoxian landslide: Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake. Sci. China Technol. Sci. 2017, 60, 1762–1766. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Kirkpatrick, D.G.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Lou, S.; Jiang, X.; Scott, P.J. Application of the morphological alpha shape method to the extraction of topographical features from engineering surfaces. Measurement 2013, 46, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 26–31 July 1992; pp. 71–78. [Google Scholar] [CrossRef]
- Craig, R.F. Craig’s Soil Mechanics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Giesen, J.; Cazals, F.; Pauly, M.; Zomorodian, A. The conformal alpha shape filtration. Vis. Comput. 2006, 22, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Fayed, M.; Mouftah, H.T. Localised alpha-shape computations for boundary recognition in sensor networks. Ad Hoc Netw. 2009, 7, 1259–1269. [Google Scholar] [CrossRef]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Gong, X.L.; Zhao, B.B.; Lu, Y.; Chen, Y.; Qiu, Y.S. Deformation monitoring of earth fissure hazards using terrestrial laser scanning. Sensors 2019, 19, 1463. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K.; Clague, J.J.; Orwin, J.F. Legacies of catastrophic rock slope failures in mountain landscapes. Earth-Sci. Rev. 2008, 87, 1–38. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Eldin, M.A.M.E.; Chen, H.Z.; Zhong, P.; Zhang, L.; Fang, K. Deposit characteristics of the Jiweishan rapid long-runout landslide based on field investigation and numerical modeling. Bull. Eng. Geol. Environ. 2019, 78, 4383–4396. [Google Scholar] [CrossRef]
Parameters | Methods | Materials | ||
---|---|---|---|---|
Pebbles | Gravels | Mixture | ||
Ra (mm) | AS | 17.06 | 16.2 | 16.75 |
HC-RG | 21.14 | 18.29 | 19.31 | |
MM | 18.38 | 17.59 | 18.58 | |
Cu | AS | 3.19 | 2.14 | 2.36 |
HC-RG | 1.52 | 1.73 | 1.7 | |
MM | 2.26 | 2.05 | 1.76 | |
Cc | AS | 1.15 | 1.09 | 1.15 |
HC-RG | 0.99 | 0.97 | 0.96 | |
MM | 1.17 | 0.99 | 1.11 |
Parameters | Methods | Location | |
---|---|---|---|
Upper Part | Lower Part | ||
Ra (mm) | AS | 242.38 | 281.96 |
HC-RG | 3478.13 | 3430.46 | |
MM | 2162.53 | 2040.81 | |
Cu | AS | 1.72 | 1.81 |
HC-RG | 1.24 | 1.22 | |
MM | 1.51 | 1.33 | |
Cc | AS | 0.76 | 0.69 |
HC-RG | 0.97 | 0.95 | |
MM | 0.96 | 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Lin, Z.; Tang, H.; Zhong, P.; Cao, B. Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms. Sensors 2020, 20, 883. https://doi.org/10.3390/s20030883
Ge Y, Lin Z, Tang H, Zhong P, Cao B. Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms. Sensors. 2020; 20(3):883. https://doi.org/10.3390/s20030883
Chicago/Turabian StyleGe, Yunfeng, Zishan Lin, Huiming Tang, Peng Zhong, and Bei Cao. 2020. "Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms" Sensors 20, no. 3: 883. https://doi.org/10.3390/s20030883
APA StyleGe, Y., Lin, Z., Tang, H., Zhong, P., & Cao, B. (2020). Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms. Sensors, 20(3), 883. https://doi.org/10.3390/s20030883