Double-Constraint Inpainting Model of a Single-Depth Image
Abstract
:1. Introduction
- Rather than the traditional single-constraint method, we adopt a double-constraint method. According to the characteristics of the depth image, we combine the low-rank constraint and nonlocal self-similarity constraint.
- We adopt the split Bregman algorithm, which is a variable splitting technique, to divide depth image inpainting into sub-problems, thus reducing the complexity of the solution.
- We use different strategies to solve depth image inpainting: weighted Schatten p-norm minimisation as the low-rank constraint and nonlocal statistical modelling as the nonlocal self-similarity constraint. The proposed method achieves better performance.
2. Related Work
2.1. Depth Images
2.2. Low-Rank Constraint and Nonlocal Self-Similarity Constraint
3. Double-Constraint Model
3.1. Similar Block Group and NLSM Model
3.2. Solution of Depth Image Inpainting
3.2.1. Sub-Problem
3.2.2. Sub-Problem
3.2.3. Sub-Problem
4. Experiments
4.1. Depth Image Inpainting
4.2. Parameter Influence
4.2.1. Number of Best-Matched Patches
4.2.2. Algorithm Stability
4.2.3. Influence of
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deng, H.; Xu, T.; Zhou, Y.; Miao, T. Depth Density Achieves a Better Result for Semantic Segmentation with the Kinect System. Sensors 2020, 20, 812. [Google Scholar] [CrossRef] [Green Version]
- Dybedal, J.; Aalerud, A.; Hovland, G. Embedded Processing and Compression of 3D Sensor Data for Large Scale Industrial Environments. Sensors 2019, 19, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Örücü, S.; Selek, M. Design and Validation of Rule-Based Expert System by Using Kinect V2 for Real-Time Athlete Support. Appl. Sci. 2020, 10, 611. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, T.; Zhao, Q. A New Model of RGB-D Camera Calibration Based on 3D Control Field. Sensors 2019, 19, 5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdi, M.Z. Depth-Based Lip Localisation and Identification of Open or Closed Mouth, Using Kinect 2. In Proceedings of the 15th International Workshop on Advanced Infrared Technology and Applications, Firenze, Italy, 17–19 September 2019; Volume 27, p. 22. [Google Scholar]
- Ophoff, T.; Van Beeck, K.; Goedemé, T. Exploring RGB-Depth Fusion for Real-Time Object Detection. Sensors 2019, 19, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan, S.; Haddad, N.; Ekmekcioglu, E.; Kondoz, A.M. No-Reference Depth Map Quality Evaluation Model Based on Depth Map Edge Confidence Measurement in Immersive Video Applications. Future Internet 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Lie, W.-N.; Ho, C.-C. Multi-Focus Image Fusion and Depth Map Estimation Based on Iterative Region Splitting Techniques. J. Imaging 2019, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Fu, Y.; Li, B.; Zhang, X.; Yu, T.; Wang, W. A New Filtering System for Using a Consumer Depth Camera at Close Range. Sensors 2019, 19, 3460. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Xie, Z.; Li, Y.; Wang, X.; Cai, W. Synthesizing Depth Hand Images with GANs and Style Transfer for Hand Pose Estimation. Sensors 2019, 19, 2919. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, X.; Yang, J. Robust Color Guide Depth Map Restornation. IEEE Trans. Image Process. 2017, 26, 315–327. [Google Scholar] [CrossRef]
- Lee, P.J. Nongeometric Distortion Smoothing Approach for Depth Map Preprocessing. IEEE Trans. Multimed. 2011, 13, 246–254. [Google Scholar] [CrossRef]
- Lei, J.; Li, L.; Yue, H.; Wu, F.; Ling, N.; Hou, C. Depth map super-resolution considering view synthesis quality. IEEE Trans. Image Process. 2017, 26, 1732–1745. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Li, J.; Lu, C. Depth map enhancement method based on joint bilateral filter. In Proceedings of the 7th International Congress on Image and Signal Processing, Dalian, China, 14–16 October 2014; pp. 153–158. [Google Scholar]
- Buyssens, P.; Le Meur, O.; Daisy, M. Depth-guided disocclusion inpainting of synthesized RGB-D images. IEEE Trans. Image Process. 2017, 26, 525–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Ren, X.; Liu, F. Depth enhancement via low-rank matrix completion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbs, OH, USA, 23–28 June 2014; pp. 3390–3397. [Google Scholar]
- Xue, H.; Zhang, S.; Cai, D. Depth image inpainting: Improve Low Rank Matrix completion with Low Gradient Regularisation. IEEE Trans. Image Process. 2017, 26, 4311–4320. [Google Scholar] [CrossRef] [Green Version]
- Scharstein, D.; Szeliski, R. High-accuracy stereo depth maps using structured light. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; pp. 195–202. [Google Scholar]
- Scharstein, D.; Pal, C. Learning conditional random fields for stereo. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Hirschmüller, H.; Scharstein, D. Evaluation of cost functions for stereo matching. In Proceedings of the IEEE Conference on CVPR, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Candes, E.J.; Recht, B. Exact matrix completion via convex optimisation. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.F.; Candes, E.J.; Shen, Z.W. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Oh, T.H.; Tai, Y.W.; Bazin, J.; Kim, H. Partial sum minimisation of singular vales in RPCA for low-level vision. In Proceedings of the IEEE CVPR, Columbus, OH, USA, 25–27 June 2013; pp. 744–758. [Google Scholar]
- Xie, Y.; Gu, S.; Liu, Y.; Zuo, W.; Zhang, W.; Zhang, L. Weighted Schatten p-norm Minimisation for Image Denoising and Background Subtraction. IEEE Trans. Image Process. 2016, 25, 4842–4857. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.H.; Xie, Q.; Meng, D.Y. Weight Nuclear Norm Minimisation and Its Applications to Low Level Vision. Int. J. Comput. Vis. 2017, 121, 183–208. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Jung, M.; Bresson, X.; Chan, T. Nonlocal Mumford Shah regularizers for color image restoration. IEEE Trans. Image Process. 2011, 20, 1583–1598. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Zhang, L.; Shi, G.; Xu, W. Image deblurring and superresolution by adaptive sparse domain selection and adaptive regularisation. IEEE Trans. Image Process. 2011, 20, 1338–1857. [Google Scholar]
- Zhang, J.; Zhao, D.; Xiong, R.; Ma, S.; Gao, W. Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain. IEEE Trans. Image Process. 2014, 24, 915–928. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, T.; Osher, S. The split Bregman algorithm for L1 regularized problem. SIAM J. Imaging Sci. (SIIMS) 2009, 2, 323–343. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, D.; Gao, W. Group-based Sparse Representation for Image Restoration. IEEE Trans. Image Process. 2014, 23, 3336–3351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candès, E.J.; Wakin, M.B.; Boyd, S. Enhancing sparsity by reweighted L1 minimisation. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Mirshy, L. A trace inequality of john von Neumann. Monatshefte Mathemetik. 1975, 79, 303–306. [Google Scholar] [CrossRef]
- Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D. A generalized iterated shrinkage algorithm for non-convex spare coding. In Proceedings of the IEEE CVPR, Columbus, OH, USA, 25–27 June 2013; pp. 217–224. [Google Scholar]
- Zhang, J.; Zhao, D.; Zhao, C.; Xiong, R.; Ma, S.; Gao, W. Image compressive sensing recovery via collaborative sparsity. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 380–391. [Google Scholar] [CrossRef]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.K. A statistical evaluation of recent full reference image quality assessment algorithm. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.Q.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Nathan, S.; Derek, H.; Pushmeet, K.; Rob, F. Indoor Segmentation and Support Inference from RGBD images. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Qiu, Y.F. Research on Image Completion Algorithm Based on Low Rank and Smooth Prior Information. Master’s Thesis, Southwest University, Chongqing, China, 2018. [Google Scholar]
Input: The observed depth image , the degraded operator |
Output: The restored depth image |
Repeat |
Step 1: Update x by Equation (8) |
Step 2: For each group |
(1) The singular value decomposition of |
(2) Update by Equation (12) |
Aggregate to form |
Step 3: Update v by Equation (20) |
Until maximum iteration number is reached |
Image | Algorithm (PSNR/FSIM) | ||
---|---|---|---|
NNM | WSNM | Proposed | |
Aloe | 26.0395/0.9571 | 26.0767/0.9628 | 26.1296/0.9705 |
Art | 26.8853/0.9366 | 27.1790/0.9825 | 27.1833/0.9835 |
Baby | 30.0559/0.9413 | 30.2569/0.9902 | 30.3200/0.9932 |
Books | 27.4590/0.9674 | 28.1774/0.9632 | 28.1806/0.9752 |
Dolls | 29.2717/0.9758 | 29.0181/0.9739 | 29.1254/0.9745 |
Lam | 23.5473/0.9756 | 24.4459/0.9761 | 24.4534/0.9761 |
Image | Algorithm (PSNR/FSIM) | ||
---|---|---|---|
NNM | WSNM | Proposed | |
Bedroom | 23.0866/0.9475 | 23.4500/0.9798 | 23.5326/0.9820 |
Lamp | 23.9880/0.8252 | 24.1906/0.8594 | 24.2457/0.8823 |
Kitchen | 24.7820/0.8763 | 26.3996/0.8822 | 26.5009/0.9029 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Zun, L.; Yong, L. Double-Constraint Inpainting Model of a Single-Depth Image. Sensors 2020, 20, 1797. https://doi.org/10.3390/s20061797
Jin W, Zun L, Yong L. Double-Constraint Inpainting Model of a Single-Depth Image. Sensors. 2020; 20(6):1797. https://doi.org/10.3390/s20061797
Chicago/Turabian StyleJin, Wu, Li Zun, and Liu Yong. 2020. "Double-Constraint Inpainting Model of a Single-Depth Image" Sensors 20, no. 6: 1797. https://doi.org/10.3390/s20061797
APA StyleJin, W., Zun, L., & Yong, L. (2020). Double-Constraint Inpainting Model of a Single-Depth Image. Sensors, 20(6), 1797. https://doi.org/10.3390/s20061797