An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture
Abstract
:1. Introduction
2. Background
3. Proposed Energy Efficient and Secure IoT-based WSN Framework for Smart Agriculture
3.1. Network Assumptions
- number of agriculture sensors are dispersed in the observing squared sized area.
- All the agriculture sensors and BS remain fixed after the nodes deployment.
- Transmission links are symmetric.
- Agriculture sensors are heterogeneous in terms of energy resources.
- BS has the most powerful node with unlimited resources.
- The location of agriculture sensors is determined using Global Positioning System (GPS).
3.2. Energy and Link Efficient Routing
3.3. Secure Data Transmission from Agriculture Sensors towards BS
4. Simulation Setup with Experimental Results
5. Experimental Results and Discussion
5.1. Analysis of Network Throughput with Discussion
5.2. Analysis of Packets Drop Ratio with Discussion
5.3. Analysis of Network Latency with Discussion
5.4. Analysis of Energy Consumption with Discussion
5.5. Analysis of Routing Overheads with Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dvir, A.; Ta, V.T.; Erlich, S.; Buttyan, L. STWSN: A novel secure distributed transport protocol for wireless sensor networks. Int. J. Commun. Syst. 2018, 31, e3827. [Google Scholar] [CrossRef]
- Mehra, P.S.; Doja, M.N.; Alam, B. Fuzzy based enhanced cluster head selection (FBECS) for WSN. J. King Saud Univ.-Sci. 2018, 32, 390–401. [Google Scholar] [CrossRef]
- Tripathi, A.; Gupta, H.P.; Dutta, T.; Mishra, R.; Shukla, K.K.; Jit, S. Coverage and connectivity in WSNs: A survey, research issues and challenges. IEEE Access 2018, 6, 26971–26992. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Cho, T.H. An energy-aware routing and filtering node (ERF) selection in CCEF to extend network lifetime in WSN. IETE J. Res. 2017, 63, 368–380. [Google Scholar] [CrossRef]
- Zhang, D.G.; Zheng, K.; Zhang, T.; Wang, X. A novel multicast routing method with minimum transmission for WSN of cloud computing service. Soft Comput. 2015, 19, 1817–1827. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Guizani, M.; Khan, S. StabTrust—A Stable and Centralized Trust-Based Clustering Mechanism for IoT Enabled Vehicular Ad-Hoc Networks. IEEE Access 2020, 8, 21159–21177. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Kim, B.S.; Hassan, S.; Khan, M.K. Trust management techniques for the Internet of Things: A survey. IEEE Access 2018, 7, 29763–29787. [Google Scholar] [CrossRef]
- Hamzah, A.; Shurman, M.; Al-Jarrah, O.; Taqieddin, E. Energy-Efficient Fuzzy-Logic-Based Clustering Technique for Hierarchical Routing Protocols in Wireless Sensor Networks. Sensors 2019, 19, 561. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H. Energy Optimization in Cluster-Based Routing Protocols for Large-Area Wireless Sensor Networks. Symmetry 2019, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Elshrkawey, M.; Elsherif, S.M.; Wahed, M.E. An enhancement approach for reducing the energy consumption in wireless sensor networks. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 259–267. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Zareei, M.; Talha, M.; Guizani, M.; Jadoon, S.U. Holitrust-a holistic cross-domain trust management mechanism for service-centric Internet of Things. IEEE Access 2019, 7, 52191–52201. [Google Scholar] [CrossRef]
- Abuarqoub, A.; Hammoudeh, M.; Adebisi, B.; Jabbar, S.; Bounceur, A.; Al-Bashar, H. Dynamic clustering and management of mobile wireless sensor networks. Comput. Netw. 2017, 117, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Tseng, P.T.; Wu, T.Y.; Deng, D.J. Social-aware dynamic router node placement in wireless mesh networks. Wirel. Netw. 2016, 22, 1235–1250. [Google Scholar] [CrossRef]
- Khattak, H.A.; Ameer, Z.; Din, U.I.; Khan, M.K. Cross-layer design and optimization techniques in wireless multimedia sensor networks for smart cities. Comput. Sci. Inf. Syst. 2019, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Din, I.U.; Guizani, M.; Hassan, S.; Kim, B.S.; Khan, M.K.; Atiquzzaman, M.; Ahmed, S.H. The Internet of Things: A review of enabled technologies and future challenges. IEEE Access 2018, 7, 7606–7640. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Guizani, M.; Altameem, A.; Jadoon, S.U. Robust trust–a pro-privacy robust distributed trust management mechanism for internet of things. IEEE Access 2019, 7, 62095–62106. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Rodrigues, J.J.; Hassan, S.; Korotaev, V.V. Machine learning in the Internet of Things: Designed techniques for smart cities. Future Gener. Comput. Syst. 2019, 100, 826–843. [Google Scholar] [CrossRef]
- Haseeb, K.; Almogren, A.; Islam, N.; Ud Din, I.; Jan, Z. An Energy-Efficient and Secure Routing Protocol for Intrusion Avoidance in IoT-Based WSN. Energies 2019, 12, 4174. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, K.; Islam, N.; Almogren, A.; Din, I.U.; Almajed, H.N.; Guizani, N. Secret Sharing-Based Energy-Aware and Multi-Hop Routing Protocol for IoT Based WSNs. IEEE Access 2019, 7, 79980–79988. [Google Scholar] [CrossRef]
- Hannah, L.; Donatti, C.I.; Harvey, C.A.; Alfaro, E.; Rodriguez, D.A.; Bouroncle, C.; Castellanos, E.; Diaz, F.; Fung, E.; Hidalgo, H.G.; et al. Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Clim. Chang. 2017, 141, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Zhou, X.; He, Y.; Shao, J.; Hu, Z.; Liu, R.; Zhou, H.; Hosseinibai, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Chang. Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef]
- Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces. 2014, 36, 263–270. [Google Scholar]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinghal, D.; Srivastava, N. Wireless Sensor Networks in Agriculture: For Potato Farming. Int. J. Eng. Sci. 2010, 2, 3955–3963. [Google Scholar]
- Alaparthy, V.T.; Morgera, S.D. Multi-level intrusion detection system for wireless sensor networks based on immune theory. IEEE Access 2018, 6, 47364–47373. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2014, 68, 1–48. [Google Scholar] [CrossRef]
- Balamurali, R.; Kathiravan, K. An analysis of various routing protocols for Precision Agriculture using Wireless Sensor Network. In Proceedings of the 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 10–12 July 2015; IEEE: Chennai, India, 2015. [Google Scholar]
- Banđur, Đ.; Jakšić, B.; Banđur, M.; Jović, S. An analysis of energy efficiency in Wireless Sensor Networks (WSNs) applied in smart agriculture. Comput. Electron. Agric. 2019, 156, 500–507. [Google Scholar] [CrossRef]
- Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M.; Coles, N. The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Liu, J. An Energy-Aware Routing Protocol with Small Overhead for Wireless Sensor Networks. In Proceedings of the International Conference on Data Mining and Big Data, Shanghai, China, 17–22 June 2018; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ullah, U.; Khan, A.; Zareei, M.; Ali, I.; Khattak, H.A.; Din, I.U. Energy-effective cooperative and reliable delivery routing protocols for underwater wireless sensor networks. Energies 2019, 12, 2630. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, K.; Islam, N.; Almogren, A.; Din, I.U. Intrusion Prevention Framework for Secure Routing in WSN-Based Mobile Internet of Things. IEEE Access 2019, 7, 185496–185505. [Google Scholar] [CrossRef]
- Darabkh, K.A.; Albtoush, W.Y.; Jafar, I.F. Improved clustering algorithms for target tracking in wireless sensor networks. J. Supercomput. 2017, 73, 1952–1977. [Google Scholar] [CrossRef]
- Enam, R.N.; Qureshi, R.; Misbahuddin, S. A uniform clustering mechanism for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Wu, S.; Han, G.; Shu, L.; Wu, H. A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access 2015, 3, 381–396. [Google Scholar] [CrossRef]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. in System Sciences, 2000. In Proceedings of the 33rd Annual Hawaii International Conference, Maui, HI, USA, 7 January 2000; IEEE: Maui, HI, USA, 2000. [Google Scholar]
- Karaca, O.; Sokullu, R.; Prasad, N.R.; Prasad, R. Application oriented multi criteria optimization in WSNs using on AHP. Wirel. Pers. Commun. 2012, 65, 689–712. [Google Scholar] [CrossRef]
- Jain, B.; Brar, G.; Malhotra, J. EKMT-k-means clustering algorithmic solution for low energy consumption for wireless sensor networks based on minimum mean distance from base station. In Networking Communication and Data Knowledge Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–123. [Google Scholar]
- Azad, P.; Sharma, V. Cluster head selection in wireless sensor networks under fuzzy environment. ISRN Sens. Netw. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lung, C.H.; Zhou, C. Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach. Ad. Hoc. Netw. 2010, 8, 3280–3344. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, H.; Zhang, L.; Song, Y. Energy Efficient Chain Based Routing Protocol for Orchard Wireless Sensor Network. J. Electr. Eng. Technol. 2019, 14, 2137–2146. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, J.R.; Sudarshan, T.S.B. A genetic fuzzy system based optimized zone based energy efficient routing protocol for mobile sensor networks (OZEEP). Appl. Soft Comput. 2015, 37, 863–886. [Google Scholar] [CrossRef]
- Rao, P.S.; Jana, P.K.; Banka, H. A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wirel. Netw. 2017, 23, 2005–2020. [Google Scholar] [CrossRef]
- Shen, J.; Wang, A.; Wang, C.; Hung, P.C.; Lai, C.F. An efficient centroid-based routing protocol for energy management in WSN-assisted IoT. IEEE Access 2017, 5, 18469–18479. [Google Scholar] [CrossRef]
- Ali, R.; Pal, A.K.; Kumari, S.; Karuppiah, M.; Conti, M. A secure user authentication and key-agreement scheme using wireless sensor networks for agriculture monitoring. Future Gener. Comput. Syst. 2018, 84, 200–215. [Google Scholar] [CrossRef]
- Ripley, B.D. Thoughts on pseudorandom number generators. J. Comput. Appl. Math. 1990, 31, 153–163. [Google Scholar] [CrossRef] [Green Version]
- L’Ecuyer, P.; Andres, T.H. A random number generator based on the combination of four LCGs. Math. Comput. Simul. 1997, 44, 99–107. [Google Scholar] [CrossRef]
- Goyal, M.; Prakash, S.; Xie, W.; Bashir, Y.; Hosseini, H.; Durresi, A. Evaluating the impact of signal to noise ratio on IEEE 802.15. 4 PHY-level packet loss rate. In Proceedings of the 2010 13th International Conference on Network-Based Information Systems, Akayama, Gifu, Japan, 14–16 September 2010. [Google Scholar]
- Lavrador, P.M.; de Carvalho, N.B.; Pedro, J.C. Evaluation of signal-to-noise and distortion ratio degradation in nonlinear systems. IEEE Trans. Microw. Theory Tech. 2004, 52, 813–822. [Google Scholar] [CrossRef]
- Ali, M.S.; Dey, T.; Biswas, R. ALEACH: Advanced LEACH routing protocol for wireless microsensor networks. In Proceedings of the 2008 International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2008; IEEE: Dhaka, Bangladesh, 2008. [Google Scholar]
- Tripathi, M.; Gaur, M.S.; Laxmi, V. Simulation of Snooze attack in LEACH. In Proceedings of the 3rd International Conference of Computer Science, Engineering and Applications (ICCSEA’13), Delhi, India, 24–26 May 2013. [Google Scholar]
- Wang, A.; Yang, D.; Sun, D. A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Comput. Electr. Eng. 2012, 38, 662–671. [Google Scholar] [CrossRef]
- Ibrihich, O.; Krit, S.D.; Laassiri, J.; El Hajji, S. Study and Simulation of Protocols of WSN Using NS2. In Transactions on Engineering Technologies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 467–480. [Google Scholar]
- Issariyakul, T.; Hossain, E. An Introduction to Network Simulator NS2; Springer: Boston, MA, USA, 2009. [Google Scholar]
Parameter | Value |
---|---|
Simulation area | 200 m × 200 m |
Deployment | Random |
Sensor nodes | 100 |
Malicious nodes | 15 |
Packet size, k | 64 bits |
Energy level | 2 j to 4 j |
Payload size | 256 bytes |
MAC layer | IEEE 802.11b |
Control message | 25 bits |
Transmission range | 20 m |
Simulation rounds | 0 to 1000 |
Traffic flows | CBR |
Simulation tool | NS2.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081. https://doi.org/10.3390/s20072081
Haseeb K, Ud Din I, Almogren A, Islam N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors. 2020; 20(7):2081. https://doi.org/10.3390/s20072081
Chicago/Turabian StyleHaseeb, Khalid, Ikram Ud Din, Ahmad Almogren, and Naveed Islam. 2020. "An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture" Sensors 20, no. 7: 2081. https://doi.org/10.3390/s20072081
APA StyleHaseeb, K., Ud Din, I., Almogren, A., & Islam, N. (2020). An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors, 20(7), 2081. https://doi.org/10.3390/s20072081