Imaging the Three-Dimensional Ionospheric Structure with a Blob Basis Functional Ionospheric Tomography Model
Abstract
:1. Introduction
2. Methodology
3. Results and Discussions
3.1. Numerical Simulation Experiment
3.2. Tomography Reconstruction of IED Using Actual GNSS Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jin, S.G.; Jin, R.; Li, J.H. Pattern and evolution of seismo-ionospheric disturbance following the 2011 Tohoku earthquake from GPS observations. J. Geophys. Res. 2014, 119, 7914–7927. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Z.; Wang, J.X.; Gao, J.X. Inversion of ionospheric electron density based on a constrained imultaneous iteration reconstruction technique. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2455–2459. [Google Scholar]
- Li, H.; Yuan, Y.B.; Li, Z.S.; Huo, X.L.; Yan, W. Ionospheric electron concentration imaging using combination of LEO Satellite data with ground-based GPS observations over China. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1728–1735. [Google Scholar] [CrossRef]
- Austen, J.R.; Franke, S.J.; Liu, C.H. Ionospheric imaging using computerized tomography. Radio Sci. 1988, 23, 299–307. [Google Scholar] [CrossRef]
- Kunitsyn, V.E.; Andreeva, E.S.; Tereshchenko, E.D. Possibilities of the near-space environment radio tomography. Radio Sci. 1997, 32, 1953–1963. [Google Scholar] [CrossRef]
- Mitchell, C.N.; Spenceand, P.S.J. A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann. Geophys. 2003, 46, 687–696. [Google Scholar]
- Ma, X.F.; Maruyama, T.; Ma, G.; Takeda, T. Three-dimensional ionospheric tomography using observation data of GPS ground receivers and ionosonde by neural network. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Lee, J.K.; Kamalabadi, F.; Makela, J.J. Three-dimensional tomography of ionospheric variability using a dense GPS receiver array. Radio Sci. 2008, 43. [Google Scholar] [CrossRef]
- Xiao, R.; Xu, J.S.; Ma, S.Y.; Xiong, C.; Lu, H. Abnormal distribution of ionospheric electron density during November 2004 super-storm by 3D CT reconstruction from IGS and LEO/GPS observations. Sci. China 2012, 55, 1230–1239. [Google Scholar] [CrossRef]
- Yao, Y.B.; Tang, J.; Kong, J.; Zhang, L.; Zhang, S. Application of hybrid regularization method for tomographic reconstruction of midlatitude ionospheric electron density. Adv. Space Res. 2013, 52, 2215–2225. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Li, P.Q.; He, J.; Hu, W.S.; Li, C.K. Research on ionospheric tomography based on vairable pixel height. Adv. Space Res. 2016, 57, 1847–1858. [Google Scholar] [CrossRef]
- Ruffini, G.; Cucurull, L.; Flores, A.; Rius, A. A PIM-aided kalman filter for GPS tomography of the ionospheric electron content. Phys. Chem. Earth. 1999, 24, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Mitchell, C.N.; Spencer, P.S.J.; Foster, C. Ionospheric electron concentration imaging GPS Over the USA during the storm of July 2000. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Gracia, R.; Crespon, F. Radio tomography of the ionosphere: Analysis of an underdetermined, ill-posed inverse problem, and regional application. Radio Sci. 2008, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.B.; Liu, S.Z.; Tang, P.Y. Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solut. 2010, 14, 375–380. [Google Scholar] [CrossRef]
- Wen, D.B.; Zhang, X.; Tong, Y.J.; Zhang, G.S.; Zhang, M.; Leng, R.S. GPS-based ionospheric tomography with a constrained adaptive simultaneous algebraic reconstruction technique. J. Earth Syst. Sci. 2015, 124, 283–289. [Google Scholar]
- Seemala, G.K.; Yamamoto, M.; Saito, A.; Chen, C.H. Three-dimensional GPS ionospheric tomography over Japan using constrained least squares. J. Geophys. Res. 2014, 119, 3044–3052. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Saito, A.; Lin, C.H.; Yamamoto, M.; Suzuki, S.; Seemala, G.K. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography. Earth Planets Space 2016, 68, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Matej, S.; Lewitt, R.M. Practical consideration for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans. Med. Imaging 1996, 15, 68–78. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Yuan, Y.B.; Ou, J.K. The effffects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration. Acta Geod. Cartogr. Sin. 1999, 28, 110–114. [Google Scholar]
- Yizengaw, E.; Dyson, P.L.; Essex, E.A.; Moldwin, M.B. Ionosphere dynamics over the southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data. Ann. Geophys. 2005, 23, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Blewitt, G. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 1990, 17, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.B.; Yuan, Y.B.; Ou, J.K.; Zhang, K.F.; Liu, K. A hybrid reconstruction algorithm for 3-D ionospheric tomography. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1733–1739. [Google Scholar] [CrossRef] [Green Version]
Range of Height (km) | Scheme | Average IED Errors (1011 el/m3) | Root Mean Square Error (1011 el/m3) | |
---|---|---|---|---|
500–1000 | 1 | a = 50, α = 3.0 | 0.14 | 0.10 |
2 | a = 50, α = 3.5 | 0.08 | 0.07 | |
3 | a = 50, α = 4.0 | 0.13 | 0.12 | |
200–500 | 1 | a = 15, α = 3.0 | 0.47 | 0.43 |
2 | a = 15, α = 3.5 | −0.18 | 0.15 | |
3 | a = 15, α = 4.0 | 0.38 | 0.40 | |
100–200 | 1 | a = 50, α = 3.0 | 0.26 | 0.23 |
2 | a = 50, α = 3.5 | 0.15 | 0.10 | |
3 | a = 50, α = 4.0 | −0.20 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, D.; Mei, D.; Du, Y. Imaging the Three-Dimensional Ionospheric Structure with a Blob Basis Functional Ionospheric Tomography Model. Sensors 2020, 20, 2182. https://doi.org/10.3390/s20082182
Wen D, Mei D, Du Y. Imaging the Three-Dimensional Ionospheric Structure with a Blob Basis Functional Ionospheric Tomography Model. Sensors. 2020; 20(8):2182. https://doi.org/10.3390/s20082182
Chicago/Turabian StyleWen, Debao, Dengkui Mei, and Yanan Du. 2020. "Imaging the Three-Dimensional Ionospheric Structure with a Blob Basis Functional Ionospheric Tomography Model" Sensors 20, no. 8: 2182. https://doi.org/10.3390/s20082182
APA StyleWen, D., Mei, D., & Du, Y. (2020). Imaging the Three-Dimensional Ionospheric Structure with a Blob Basis Functional Ionospheric Tomography Model. Sensors, 20(8), 2182. https://doi.org/10.3390/s20082182