Groupwise Image Alignment via Self Quotient Images
Abstract
:1. Introduction
2. Problem Formulation
2.1. Preliminaries
2.2. The Proposed Solution
- : The k-th member of the sequence, is an approximation of the “mean” image in the k-th iteration of the minimization process
- : The limit of the sequence we would like to be the unknown “mean” image, that is:
Algorithm 1: Outline of the Proposed LS-Groupwise Algorithm |
3. Registration of Multimodal Images
3.1. Photometrically—Distorted Images
3.2. Multimodal MR Images
3.3. Self Quotient Images
4. Experiments
4.1. Experiment 1
4.2. Experiment 2
4.3. Experiment 3
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Q.; Wang, Q. Groupwise registration of brain magnetic resonance images: A review. J. Shanghai Jiaotong Univ. (Sci.) 2014, 19, 755–762. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.; Yu, J.; Leung, H.; Li, Y. Ensemble registration of multisensor images by a variational bayesian approach. IEEE Sens. J. 2014, 14, 2698–2705. [Google Scholar] [CrossRef]
- Arandjelovic, O.; Pham, D.S.; Venkatesh, S. Groupwise registration of aerial images. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Learned-Miller, E.G. Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 236–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zollei, L. A Unified Information Theoretic Framework for Pair-and Group-Wise Registration of Medical Images. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006. [Google Scholar]
- Vedaldi, A.; Soatto, S. A complexity-distortion approach to joint pattern alignment. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 1425–1432. [Google Scholar]
- Cox, M.; Sridharan, S.; Lucey, S.; Cohn, J. Least squares congealing for unsupervised alignment of images. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Cox, M.D. Unsupervised Alignment of Thousands of Images. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2010. [Google Scholar]
- Xue, Y.; Liu, X. Image congealing via efficient feature selection. In Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision (WACV), Breckenridge, CO, USA, 9–11 January 2012; pp. 185–192. [Google Scholar]
- Ni, W.; Vu, N.S.; Caplier, A. Unsupervised joint face alignment with gradient correlation coefficient. Pattern Anal. Appl. 2016, 19, 447–462. [Google Scholar] [CrossRef]
- Storer, M.; Urschler, M.; Bischof, H. Intensity-based congealing for unsupervised joint image alignment. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 1473–1476. [Google Scholar]
- Huang, G.B.; Jain, V.; Learned-Miller, E. Unsupervised joint alignment of complex images. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Huang, G.; Mattar, M.; Lee, H.; Learned-Miller, E.G. Learning to align from scratch. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 764–772. [Google Scholar]
- Huizinga, W.; Poot, D.H.; Guyader, J.M.; Klaassen, R.; Coolen, B.F.; van Kranenburg, M.; Van Geuns, R.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; et al. PCA-based groupwise image registration for quantitative MRI. Med. Image Anal. 2016, 29, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Guyader, J.M.; Huizinga, W.; Poot, D.H.; van Kranenburg, M.; Uitterdijk, A.; Niessen, W.J.; Klein, S. Groupwise image registration based on a total correlation dissimilarity measure for quantitative MRI and dynamic imaging data. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.D.; Ravi, V.; Peters, R.A. A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends. arXiv 2019, arXiv:1905.13294. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep Learning for Visual Understanding. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Stajduhar, I.; Tomic, M.; Lerga, J. Mirroring quasi-symmetric organ observations for reducing problem complexity. Expert Syst. Appl. 2017, 85, 318–334. [Google Scholar] [CrossRef]
- Fu, Y.; Lei, Y.; Wang, T.; Curran, W.; Liu, T.; Yang, X. Deep Learning in Medical Image Registration: A Review. arXiv 2019, arXiv:1912.12318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, T.; Zheng, Y.; Sui, X.; Jiang, Y.; Cong, J.; Jiao, W.; Zhao, B. DGR-Net: Deep Groupwise Registration of Multispectral Images. In Proceedings of the International Conference on Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 706–717. [Google Scholar]
- Ahmad, S.; Fan, J.; Dong, P.; Cao, X.; Yap, P.T.; Shen, D. Deep Learning Deformation Initialization for Rapid Groupwise Registration of Inhomogeneous Image Populations. Front. Neuroinf. 2019, 13, 34. [Google Scholar]
- Ni, W.; Vu, N.S.; Caplier, A. Lucas–Kanade based entropy congealing for joint face alignment. Image Vis. Comput. 2012, 30, 954–965. [Google Scholar] [CrossRef]
- Nikolikos, N.; Psarakis, E.Z.; Lamprinou, N. A new Least Squares based congealing technique. Pattern Recognit. Lett. 2017, 95, 58–64. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, X.; Wheeler, F.W.; Tu, P. Automatic facial landmark labeling with minimal supervision. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2097–2104. [Google Scholar]
- Baker, S.; Matthews, I. Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 2004, 56, 221–255. [Google Scholar] [CrossRef]
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef] [Green Version]
- Nikolikos, N.; Lamprinou, N.; Boile, A.; Psarakis, E. Multi-contrast MR Image/Volume Alignment via ECC Maximization. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 1006–1011. [Google Scholar]
- Yang, F.; Huang, J.; Metaxas, D. Sparse shape registration for occluded facial feature localization. In Proceedings of the Face and Gesture, Santa Barbara, CA, USA, 21–25 March 2011; pp. 272–277. [Google Scholar]
- Yang, G.; Feng, Y.; Lu, H. Sparse error via reweighted Low Rank Representation for face recognition with various illumination and occlusion. Optik 2015, 126, 5376–5380. [Google Scholar] [CrossRef]
- Ding, L.; Martinez, A.M. Features versus context: An approach for precise and detailed detection and delineation of faces and facial features. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2022–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, S.Z.; Wang, Y.; Zhang, J. Self quotient image for face recognition. In Proceedings of the International Conference on Image Processing (ICIP), Singapore, 24–27 October 2004; pp. 1397–1400. [Google Scholar]
- Peng, Y.; Ganesh, A.; Wright, J.; Xu, W.; Ma, Y. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamprinou, N.; Nikolikos, N.; Psarakis, E.Z. Groupwise Image Alignment via Self Quotient Images. Sensors 2020, 20, 2325. https://doi.org/10.3390/s20082325
Lamprinou N, Nikolikos N, Psarakis EZ. Groupwise Image Alignment via Self Quotient Images. Sensors. 2020; 20(8):2325. https://doi.org/10.3390/s20082325
Chicago/Turabian StyleLamprinou, Nefeli, Nikolaos Nikolikos, and Emmanouil Z. Psarakis. 2020. "Groupwise Image Alignment via Self Quotient Images" Sensors 20, no. 8: 2325. https://doi.org/10.3390/s20082325
APA StyleLamprinou, N., Nikolikos, N., & Psarakis, E. Z. (2020). Groupwise Image Alignment via Self Quotient Images. Sensors, 20(8), 2325. https://doi.org/10.3390/s20082325