Applications of Smart Textiles in Post-Stroke Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Modified Solution
2.2. Substrate
2.3. Microscopic Research
2.4. Physical Vapor Deposition
3. Results and Discussion
3.1. The New Solution
3.2. Case Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piskorz, J.; Wójcik, G.; Iłzecka, J.; Kozak-Putowska, D. Early rehabilitation of patients after ischemic stroke. Med. Ogólna i Nauk. Zdrowiu 2014, 20, 351–355. (In Polish) [Google Scholar] [CrossRef]
- Saver, J.L. Time is brain—Quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starosta, M.; Niwald, M.; Miller, E. The effectiveness of comprehensive rehabilitation after a first episode of ischemic stroke. Polski Merkur. Lek. Organ Polskiego Towar. Lek. 2015, 38, 51. [Google Scholar]
- Krawczyk, A.; Wyszyńska, E.; Wiśniewska, S.; Mróz, J.; Korzeniewska, E.; Murawski, P.; Wojak, M. Electrostimulation in medicine—History and contemporary usage. Prz. Elektrotechniczny 2018, 94, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Hallett, M. Recent Advances in Stroke Rehabilitation. Neurorehabilit. Neural Repair 2002, 16, 211–217. [Google Scholar] [CrossRef]
- Kaczmarski, M.; Granosik, G. Rehabilitation robot RRH1. Arch. Mech. Eng. 2011, 58, 103–113. [Google Scholar] [CrossRef]
- Kornet, M.; Głowacka-Mrotek, I.; Nowacka, K.; Hagner, W. Upper limb treatment technigues for stroke survivors. J. Educ. Health Sport 2017, 7, 234–257. [Google Scholar]
- Hesse, S.; Mehrholz, J.; Werner, C. Robot-Assisted Upper and Lower Limb Rehabilitation After Stroke. Dtsch. Aerzteblatt Online 2008, 105, 330–336. [Google Scholar] [CrossRef]
- Van Vliet, P.M.; Wulf, G. Extrinsic feedback for motor learning after stroke: What is the evidence? Disabil. Rehabil. 2006, 28, 831–840. [Google Scholar] [CrossRef]
- Kattenstroth, J.C.; Kalisch, T.; Sczesny-Kaiser, M.; Greulich, W.; Tegenthoff, M.; Dinse, H.R. Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial. BMC Neurol. 2018, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Irimia, D.C.; Poboroniuc, M.S.; Hartopanu, S.; Sticea, D.; Paicu, G.; Ignat, E.B. Post-stroke hand rehabilitation using a hybrid FES-robotic glove. In Proceedings of the International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 20–22 October 2016. [Google Scholar]
- Nomura, M.; Kucharek, N.; Zubrycki, I.; Granosik, G.; Morita, Y. Adjustability for Grasping Force of Patients with Autism by iWakka: A Pilot Study. In Proceedings of the 12th International Workshop on Robot Motion and Control (RoMoCo), Poznań, Poland, 8–10 July 2019; pp. 50–55. [Google Scholar]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sale, P.; Lombardi, V.; Franceschini, M. Hand robotics rehabilitation: Feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res Treat. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Fahaam, H.; Davis, S.; Nefti-Meziani, S. Power assistive and rehabilitation wearable robot based on pneumatic soft actuators. In Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 29 August–1 September 2016. [Google Scholar]
- Jakubas, A.; Łada-Tondyra, E. A study on application of the ribbing stitch as sensor of respiratory rhythm in smart clothing designed for infants. J. Text. Inst. 2018, 109, 1208–1216. [Google Scholar] [CrossRef]
- Jakubas, A.; Łada-Tondyra, E.; Nowak, M. Textile sensors used in smart clothing to monitor the vital functions of young children. In Proceedings of the Progress in Applied Electrical Engineering (PAEE), Kościelisko, Poland, 25–30 June 2017; pp. 1–4. [Google Scholar]
- Korzeniewska, E.; Szczęsny, A.; Krawczyk, A.; Murawski, P.; Mróz, J.; Seme, S. Temperature distribution around thin electroconductive layers created on composite textile substrates. Open Phys. 2018, 16, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Tokarska, M.; Gniotek, K. Anisotropy of the electrical properties of flat textiles. J. Text. Inst. 2014, 106, 9–18. [Google Scholar] [CrossRef]
- Tokarska, M.; Frydrysiak, M.; Zięba, J. Electrical properties of flat textile material as inhomegeneous and anisotropic structure. J. Mater. Sci. Mater. Electron. 2013, 24, 5061–5068. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R.; Tomczyk, M.; Walczak, M. Durability and reliability enhancement of selected electronic components achieved by laser technologies. In Proceedings of the 24th International Conference "Mixed Design of Integrated Circuits and Systems, Bydgoszcz, Poland, 22–24 June 2017; pp. 459–462. [Google Scholar]
- Pawlak, R.; Tomczyk, M.; Walczak, M. Ablation of selected conducting layers by fiber laser. In Proceedings of the 13th International Scientific Conference on Optical Sensors and Electronic Sensors, Lodz, Poland, 22–25 June 2014; p. 92910. [Google Scholar]
- Korzeniewska, E.; Walczak, M.; Rymaszewski, J. Elements of elastic electronics created on textile substrate. In Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems, Bydgoszcz, Poland, 22–24 June 2017; pp. 447–450. [Google Scholar]
- Gliścińska, E.; Sankowski, D.; Krucińska, I.; Gocławski, J.; Michalak, M.; Rowinska, Z.; Sekulska-Nalewajko, J. Optical coherence tomography image analysis of polymer surface layers in sound-absorbing fibrous composite materials. Polym. Test. 2017, 63, 194–203. [Google Scholar] [CrossRef]
- Gocławski, J.; Korzeniewska, E.; Sekulska-Nalewajko, J.; Sankowski, D.; Pawlak, R. Extraction of the Polyurethane Layer in Textile Composites for Textronics Applications Using Optical Coherence Tomography. Polymers 2018, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Korzeniewska, E.; Szczesny AKrawczyk, A.; Murawski PMroz, J. Analysis of the temperature field around the thin electroconductive layers formed on the substrates. In Proceedings of the 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Lodz, Poland, 14–16 September 2017. [Google Scholar]
- Hayward, J.; E-Textiles 2019–2029: Technologies, Markets and Players. A Comprehensive Review of Materials, Processes, Components, Products and Markets. Available online: https://www.idtechex.com (accessed on 1 March 2020).
- Sreenilayam, S.P.; Ahad, I.U.; Nicolosi, V.; Garzon, V.A.; Brabazon, D. Advanced materials of printed wearables for physiological parameter monitoring. Mater. Today 2020, 32, 147–177. [Google Scholar] [CrossRef]
- Enokibori, Y.; Suzuki, A.; Mizuno, H.; Shimakami, Y.; Mase, K. E-textile pressure sensor based on conductive fiber and its structure. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 207–210. [Google Scholar]
- Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321. [Google Scholar] [CrossRef]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F.; et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef]
- Lin, M.-F.; Xiong, J.; Wang, J.; Parida, K.; Lee, P.S. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 2018, 44, 248–255. [Google Scholar] [CrossRef]
- Li, T.; Zou, J.; Xing, F.; Zhang, M.; Cao, X.; Wang, N.; Wang, Z.L. From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design. ACS Nano 2017, 11, 3950–3956. [Google Scholar] [CrossRef] [PubMed]
- Bahk, J.-H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Parida, K.; Thangavel, G.; Cai, G.; Zhou, X.; Park, S.; Xiong, J.; Lee, P.S. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 2019, 10, 2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Zhai, J.; Xia, Y.; Dong, S. Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance. Nanoscale 2017, 9, 11846–11850. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2019, 32, e1901958. [Google Scholar] [CrossRef]
- Irwin, M.D.; Roberson, D.A.; Olivas, R.I.; Wicker, R.B.; Macdonald, E. Conductive polymer-coated threads as electrical interconnects in e-textiles. Fibers Polym. 2011, 12, 904–910. [Google Scholar] [CrossRef]
- Roh, J.-S. All-fabric interconnection and one-stop production process for electronic textile sensors. Text. Res. J. 2016, 87, 1445–1456. [Google Scholar] [CrossRef]
- Glinka, K.; Wosiak, A.; Zakrzewska, D. Improving Children Diagnostics by Efficient Multi-label Classification Method. In Advances in Intelligent Systems and Computing; Springer Science and Business Media LLC: Kamień Śląski, Poland, 2016; Volume 471, pp. 253–266. [Google Scholar]
- Rutherford, J.J. Wearable technology—Health Care Solutions for a Growing Global Population. IEEE Eng. Med. Biol. Mag. 2010, 29, 19–24. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Klosowski, G.; Tchorzewski, P.; Cieplak, T.; Kozlowski, E. Area monitoring using the ERT method with multisensor electrodes. Prz. Elektrotechniczny 2019, 95, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Rymarczyk, T.; Nita, P.; Vejar, A.; Wos, M.; Stefaniak, B.; Adamkiewicz, P. Wareable mobile measuring device based on electrical tomography. Prz. Elektrotechniczny 2019, 95, 211–214. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.-S.; Bonato, P.; Chan, L.; Rodgers, M.M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabilitation 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Krukowska, J.; Świątek, E.; Sienkiewicz, M.; Czernicki, J. Influence of the surface electrostimulation controlled by muscle contraction on the bioelectric muscle activity and restoration of the hand function in cerebral stroke patients. Neuro Rehabil. 2014, 35, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.K.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Acar, G.; Ozturk, O.; Golparvar, A.; Alkhidir, T.E.; Böhringer, K.F.; Yapici, M.K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics 2019, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Korzeniewska, E.; Sekulska-Nalewajko, J.; Gocławski, J.; Rosik, R.; Szczęsny, A.; Starowicz, Z. Surface Morphology Analysis of Metallic Structures Formed on Flexible Textile Composite Substrates. Sensors 2020, 20, 2128. [Google Scholar] [CrossRef] [Green Version]
Test | Items Used for the Test | Right Hand | Left Hand | ||||
---|---|---|---|---|---|---|---|
0 Week | 2 Weeks | 4 Weeks | 0 Week | 2 Weeks | 4 Weeks | ||
Writing | Pen and piece of paper A4 | 8.16 s | 7.46 s | 5.71 s | - | 42.5 s | 17.58 s |
Flipping cards | Playing cards | 5.11 s | 4.1 s | 3.5 s | - | 25.5 s | 8.08 s |
Collecting coins into containers | Coins of different sizes | 5.2 s | 5.2 s | 4.94 s | - | 31.3 s | 17.2 s |
Collecting beads with a spoon into a container | Yogurt cup and 5 pieces of beads/chopping board | 7.56 s | 6.92 s | 7.22 s | - | 24.1 s | 12.02 s |
Stacking coins in a pile | 5 pcs of 2 PLN coins | 4.99 s | 4.49 s | 5.68 s | - | - | 16.1 s |
Moving objects to the designated field | Yogurt jars | 3.15 s | 3.22 s | 3.28 s | 14.5 s | 9.37 s | 6.5 s |
Muscular strength handshake | Dynamometer | 26 kg | 29.3 kg | 32 kg | 2.3 kg | 6 kg | 12.7 kg |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzeniewska, E.; Krawczyk, A.; Mróz, J.; Wyszyńska, E.; Zawiślak, R. Applications of Smart Textiles in Post-Stroke Rehabilitation. Sensors 2020, 20, 2370. https://doi.org/10.3390/s20082370
Korzeniewska E, Krawczyk A, Mróz J, Wyszyńska E, Zawiślak R. Applications of Smart Textiles in Post-Stroke Rehabilitation. Sensors. 2020; 20(8):2370. https://doi.org/10.3390/s20082370
Chicago/Turabian StyleKorzeniewska, Ewa, Andrzej Krawczyk, Józef Mróz, Elżbieta Wyszyńska, and Rafał Zawiślak. 2020. "Applications of Smart Textiles in Post-Stroke Rehabilitation" Sensors 20, no. 8: 2370. https://doi.org/10.3390/s20082370
APA StyleKorzeniewska, E., Krawczyk, A., Mróz, J., Wyszyńska, E., & Zawiślak, R. (2020). Applications of Smart Textiles in Post-Stroke Rehabilitation. Sensors, 20(8), 2370. https://doi.org/10.3390/s20082370