Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature
Abstract
:1. Introduction
2. Extraction of COM Parameters
2.1. Reflection Coefficient
2.2. Extraction of Other Relevant Parameters
3. COM Model
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fukuda, T.; Takeda, P.; Shimamura, K.; Kawanaka, H.; Kumatoriya, M.; Murakami, S.; Sato, J.; Sato, M. Growth of new langasite single crystals for piezoelectric applications. In Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, Montreux, Switzerland, 24–27 August 1998; pp. 315–319. [Google Scholar]
- Chai, B.; Lefaucheur, J.L.; Ji, Y.Y.; Qiu, H. Growth and evaluation of large size LGS, LGN and LGT single crystals. In Proceedings of the IEEE International Frequency Control Symposium, Pasadena, CA, USA, 29 May 1998; pp. 748–758. [Google Scholar]
- Buzanov, O.A.; Naumov, A.V.; Nechaev, V.V.; Knyazev, S.N. A new approach to the growth of langasite crystals. In Proceedings of the IEEE International Frequency Control Symposium, Honolulu, HI, USA, 5–7 June 1996; pp. 131–136. [Google Scholar]
- Smythe, R.C. Material and resonator properties of langasite and langatate—A progress report. In Proceedings of the IEEE International Frequency Control Symposium, Pasadena, CA, USA, 29 May 1998; pp. 761–765. [Google Scholar]
- Li, L.; Peng, B. Temperature-Dependent Characteristics of Surface Acoustic Wave Resonators Deposited on (0°, 138.5°, ψ) Langasite Cuts. IEEE Sens. J. 2019, 19, 1388–1391. [Google Scholar] [CrossRef]
- Ayes, A.; Bernhardt, G.; da Cunha, M.P. Removal of Stress Hillocks from Platinum-Alumina Electrodes Used in High-temperature SAW Devices. In Proceedings of the IEEE Ultrasonics Symposium, Glasgow, UK, 6–9 October 2019; pp. 727–730. [Google Scholar]
- Aubert, T.; Nicolay, P.; Sarry, F. Thermoelastic effects in Pt IDTs. Impact on the behavior of high-temperature LGS-based SAW devices. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 259–262. [Google Scholar]
- Weihnacht, M.; Sotnikov, A.; Schmidt, H.; Wall, B.; Grünwald, R. Langasite: High temperature properties and SAW simulations. In Proceedings of the International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1549–1552. [Google Scholar]
- Shu, L.; Peng, B.; Yang, Z.; Wang, R.; Deng, S.; Liu, X. High-Temperature SAW Wireless Strain Sensor with Langasite. IEEE Sens. J. 2015, 15, 28531–28542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardong, J.; Aubert, T.; Naumenko, N.; Bruckner, G.; Salzmann, S.; Reindl, L.M. Experimental and Theoretical Investigations of Some Useful Langasite Cuts for High-Temperature SAW Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, S.; Kondratiev, S.; Zabelin, A.; Naumenko, N.; Azarov, A.; Zhgoon, S.; Shvetsov, A. Theoretical and experimental investigation of langasite as material for wireless high temperature SAW sensors. In Proceedings of the IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 535–538. [Google Scholar]
- Canabal, A.; Davulis, P.M.; Pollard, T.; Da Cunha, M.P. Multi-Sensor Wireless Interrogation of SAW Resonators at High Temperatures. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 265–268. [Google Scholar]
- Moulzolf, S.C.; Behanan, R.; Lad, R.J.; da Cunha, M.P. Langasite SAW Pressure Sensor for Harsh Environments. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1224–1227. [Google Scholar]
- Wendt, T.M.; Reindl, L.M. Multiple Access Methods utilized to extend Operational Life Time of Wireless Sensor Nodes. In Proceedings of the 2008 2nd Annual IEEE Systems Conference, Montreal, QC, Canada, 7–10 April 2008. [Google Scholar]
- Simons, D.A. Reflection of Rayleigh Waves by strips, grooves, and periodic arrays of strips or grooves. J. Acoust. Soc. Am. 1978, 63, 1292–1301. [Google Scholar] [CrossRef]
- Datta, S.; Hunsinger, B.J. First-order reflection coefficient of surface acoustic waves from thin strips overlays. J. Appl. Phys. 1979, 50, 5661–5665. [Google Scholar] [CrossRef]
- Datta, S.; Hunsinger, B.J. An analytical theory for the scattering of surface acoustic waves by a single electrode in a periodic array on a piezoelectric substrate. J. Appl. Phys. 1980, 51, 4817–4823. [Google Scholar] [CrossRef]
- Skeie, H. Electrical and Mechanical Loading of a Piezoelectric Surface supporting surface waves. J. Acoust. Soc. Am. 1970, 48, 1098–1109. [Google Scholar] [CrossRef]
- He, S.; Chen, D.; Wang, C. The IDT with high internal reflection suppression. Acta Acust. 1990, 15, 180. [Google Scholar]
- Plessky, V.; Koskela, J. Coupling-of-modes analysis of SAW devices. Int. J. High Speed Electron. Syst. 2000, 10, 867–947. [Google Scholar] [CrossRef]
Parameters | Description | Values |
---|---|---|
λ | Wavelength | 13.6 µm |
E | Electrode width | 3.4 µm |
A | Aperture | 1.36 mm |
f | Frequency | 195 MHz |
Nint | Number of T1 and T2 pairs | 15 |
L | Distance between IDTs | 1 mm |
L1 | Distance between Reflector and T3 | 2.6 mm |
COM Parameters | v (m/s) | α | C (F) | κ |
---|---|---|---|---|
value | 2512 | 1.613 × 10−4 | 2.589 × 10−10 | 0.0133 |
λ (µm) | Number of IDT Pairs | Number of Reflector Pairs | W | L1 | L2 |
---|---|---|---|---|---|
6.28 | 60 | 180 | 100λ | 0.125λ | 0.125λ |
6.28 | 60 | 180 | 100λ | 0. 25λ | 0.25λ |
6.28 | 60 | 180 | 100λ | 0.375λ | 0.375λ |
6.28 | 60 | 180 | 100λ | 0.5λ | 0.5λ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, W.; Fan, S.; Yin, Y.; Jia, Y.; Liang, Y.; Liu, M. Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Sensors 2020, 20, 2441. https://doi.org/10.3390/s20092441
Li X, Wang W, Fan S, Yin Y, Jia Y, Liang Y, Liu M. Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Sensors. 2020; 20(9):2441. https://doi.org/10.3390/s20092441
Chicago/Turabian StyleLi, Xueling, Wen Wang, Shuyao Fan, Yining Yin, Yana Jia, Yong Liang, and Mengwei Liu. 2020. "Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature" Sensors 20, no. 9: 2441. https://doi.org/10.3390/s20092441
APA StyleLi, X., Wang, W., Fan, S., Yin, Y., Jia, Y., Liang, Y., & Liu, M. (2020). Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Sensors, 20(9), 2441. https://doi.org/10.3390/s20092441