Five Typical Stenches Detection Using an Electronic Nose
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Device and Experiment
2.3. The Composition of Dataset and Feature Extraction
2.4. Pattern Recognition Methods
2.4.1. Random Forest
2.4.2. Back-Propagation Neural Network (BPNN)
2.4.3. Support Vector Machines (SVMs)
2.4.4. Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA)
2.5. Data Initialization and K-Fold Cross-Validation
3. Results and Discussion
3.1. Analysis of Dimension Reduction
3.2. Analysis of the Other Four Algorithms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Ueno, H.; Amano, S.; Merecka, B.; Kosmider, J. Difference in the odor concentrations measured by the triangle odor bag method and dynamic olfactometry. Water Sci. Technol. 2009, 59, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- GBT. 14675-1993 Air Quality-Determination of Odor-Triangle Odor Bag Method. Available online: https://www.codeofchina.com/standard/GBT14675-1993.html (accessed on 9 April 2020).
- Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gu, J.H.; Zhang, R.; Mao, Y.Z.; Tian, S.Y. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors 2019, 19, 605. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Babu, K.J.; Srinandan, C.S.; Rayappan, J.B.B. Freshness assessment of broccoli using electronic nose. Measurement 2019, 145, 735–743. [Google Scholar] [CrossRef]
- Jia, W.S.; Liang, G.; Jiang, Z.J.; Wang, J.H. Advances in electronic nose development for application to agricultural products. Food Anal. Methods 2019, 12, 2226–2240. [Google Scholar] [CrossRef]
- Jia, W.S.; Liang, G.; Wang, Y.L.; Wang, J.H. Electronic noses as a powerful tool for assessing meat quality: A mini review. Food Anal. Methods 2018, 11, 2916–2924. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Arseniyeva, L. Electronic nose combined with chemometric approaches to assess authenticity and adulteration of sausages by soy protein. Sens. Actuators B Chem. 2020, 303, 127250. [Google Scholar] [CrossRef]
- Gila, D.M.M.; Garcia, J.G.; Bellincontro, A.; Mencarelli, F.; Ortega, J.G. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Zhu, D.S.; Ren, X.J.; Wei, L.W.; Cao, X.H.; Ge, Y.H.; Liu, H.; Li, J.R. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Gamboa, J.C.R.; Albarracin, E.E.S.; da Silva, A.J.; Lima, L.L.D.; Ferreira, T.A.E. Wine quality rapid detection using a compact electronic nose system: Application focused on spoilage thresholds by acetic acid. Lwt Food Sci. Technol. 2019, 108, 377–384. [Google Scholar] [CrossRef]
- Liu, H.X.; Li, Q.; Yan, B.; Zhang, L.; Gu, Y. Bionic electronic nose based on MOS sensors array and machine learning algorithms used for wine properties detection. Sensors 2019, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Voss, H.G.J.; Mendes Junior, J.J.A.; Farinelli, M.E.; Stevan, S.L. A prototype to detect the alcohol content of beers based on an electronic nose. Sensors 2019, 19, 2646. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, D.R.; Sarno, R.; Zulaika, E. Noise filtering framework for electronic nose signals: An application for beef quality monitoring. Comput. Electron. Agric. 2019, 157, 305–321. [Google Scholar] [CrossRef]
- Zonta, G.; Anania, G.; Astolfi, M.; Feo, C.; Gaiardo, A.; Gherardi, S.; Malagu, C. Chemoresistive sensors for colorectal cancer preventive screening through fecal odor: Double-blind approach. Sens. Actuators B Chem. 2019, 301, 127062. [Google Scholar] [CrossRef]
- Jia, W.S.; Liang, G.; Tian, H.; Sun, J.; Wan, C.H. Electronic nose-based technique for rapid detection and recognition of moldy apples. Sensors 2019, 19, 1526. [Google Scholar] [CrossRef]
- Jia, X.M.; Meng, Q.H.; Jing, Y.Q.; Qi, P.F.; Zeng, M.; Ma, S.G. A new method combining KECA-LDA with ELM for classification of Chinese liquors using electronic nose. IEEE Sens. J. 2016, 16, 8010–8017. [Google Scholar] [CrossRef]
- Men, H.; Fu, S.L.; Yang, J.L.; Cheng, M.Q.; Shi, Y.; Liu, J.J. Comparison of SVM, RF and ELM on an electronic nose for the intelligent evaluation of paraffin samples. Sensors 2018, 18, 285. [Google Scholar] [CrossRef]
- Qiu, S.S.; Wang, J.; Gao, L.P. Discrimination and characterization of strawberry juice based on electronic nose and tongue: Comparison of different juice processing approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62, 6426–6434. [Google Scholar] [CrossRef]
- Gao, D.Q.; Ji, J.M.; Gong, J.Y.; Cai, C.Q. Quantitative analysis of different volatile organic compounds using an improved electronic nose. Meas. Sci. Technol. 2012, 23, 105103. [Google Scholar] [CrossRef]
- Gao, D.Q.; Liu, F.J.; Wang, J. Quantitative analysis of multiple kinds of volatile organic compounds using hierarchical models with an electronic nose. Sens. Actuators B Chem. 2012, 161, 578–586. [Google Scholar] [CrossRef]
- Wang, J.; Gao, D.Q.; Wang, Z.J. Quality-grade evaluation of petroleum waxes using an electronic nose with a TGS gas sensor array. Meas. Sci. Technol. 2015, 26, 085005. [Google Scholar] [CrossRef]
- Xiao, J.L. SVM and KNN ensemble learning for traffic incident detection. Phys. A Stat. Mech. Appl. 2019, 517, 29–35. [Google Scholar] [CrossRef]
Chemical solution | Standard Concentration | Experimental Concentration |
---|---|---|
2-phenylethyl alcohol | ||
isovaleric acid | ||
methylcyclopentanone | ||
γ-undecalactone | ||
2-methylindole |
No. in Array | Sensor Name | Typical Target |
---|---|---|
1 | 2600 | , CO, etc. |
2 | 800 | Combustible gas, etc. |
3 | 2602 | Alcohol, methylbenzene, etc. |
4 | 2603 | Methyl mercaptan, etc. |
5 | 822 | Benzene, etc. |
6 | 823 | Isobutane, etc. |
7 | 2611 | , Combustible gas, etc. |
8 | 826 | , etc. |
9 | 832 | R22, R134a, etc. |
Algorithm | 1–60 s Training Set Accuracy (STD) | 1–60 s Testing Set Accuracy (STD) | 60–120 s Training Set Accuracy (STD) | 60–120 s Testing Set Accuracy (STD) |
---|---|---|---|---|
BPNN | 62.32% (13.67%) | 51.10% (13.26%) | 92.55% (9.54%) | 87.10% (9.58%) |
RF | 100% (0%) | 90.50% (5.34%) | 100% (0%) | 90.30% (8.20%) |
LDA (RF) | 100% (0%) | 95.40% (4.12%) | 100% (0%) | 95.60% (4.98%) |
SVMs | 100% (0%) | 88.50% (6.88%) | 100% (0%) | 87.00% (8.03%) |
LDA (SVM) | 98.93% (0.57%) | 95.30% (5.18%) | 99.88% (0.28%) | 97.70% (3.14%) |
PCA (SVM) | 91.93% (1.95%) | 75.70% (7.91%) | 92.75% (1.92%) | 72.40% (10.51%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Gao, D. Five Typical Stenches Detection Using an Electronic Nose. Sensors 2020, 20, 2514. https://doi.org/10.3390/s20092514
Jiang W, Gao D. Five Typical Stenches Detection Using an Electronic Nose. Sensors. 2020; 20(9):2514. https://doi.org/10.3390/s20092514
Chicago/Turabian StyleJiang, Wei, and Daqi Gao. 2020. "Five Typical Stenches Detection Using an Electronic Nose" Sensors 20, no. 9: 2514. https://doi.org/10.3390/s20092514
APA StyleJiang, W., & Gao, D. (2020). Five Typical Stenches Detection Using an Electronic Nose. Sensors, 20(9), 2514. https://doi.org/10.3390/s20092514