Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- aged over 65 years old;
- resided in or attended a nursing home or day center;
- able to walk 3 m;
- able to provide written informed consent;
- understood, spoke, and read Spanish proficiently;
- not having requested a transfer to another center;
- agreed to wear the wristband for 30 days (during the day and night).
2.3. Data Collection
2.4. Tools and Measures
2.4.1. Institution Database
- Diagnoses of any of these physical conditions: osteoporosis, osteoarthritis, dizziness and giddiness, rheumatoid arthritis, abnormalities of gait and mobility, or multiple sclerosis.
- Diagnoses of any of these cognitive conditions: Alzheimer’s disease, dementia, or age-associated cognitive decline.
- Diagnoses of other health conditions: hypertension, visual impairment, diabetes, or hearing loss.
2.4.2. Health-Related Quality of Life
2.4.3. Xiaomi Mi Band 2
- Daily activity: analyzed through the number of daily steps and the daily distance covered by each participant in meters. Based on Tudor-Locke’s study, <3000 steps indicated a low level of physical activity and 3000–10,000 steps indicated a moderate physical activity level [23].
- Sleep: analyzed in minutes in four different parameters (daily deep sleep, daily shallow sleep, total daily sleep, and awake time in bed during the night). The Sleep Foundation recommendation was used to reference older adults’ adequate sleep of around 7–8 h, which corresponds to 420–480 min per day [51].
2.5. Statistical Analysis
2.6. Ethical Concerns
3. Results
3.1. History of Falls
3.2. Risk of Falling
3.3. Health-Related Quality of Life
3.4. Xiaomi Mi Band 2 Parameter Associations
3.5. Correlations and Associations with Daily Steps
3.6. Risk of Falling Binary Regression
3.7. Xiaomi Mi Band 2 Parameters Binary Regressions
3.8. Generalized Model of Daily Steps
4. Discussion
4.1. Limitations
4.2. Further Work in the Field
4.3. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostats Ageing Europe—Statistics on Population Developments—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Ageing_Europe_-_statistics_on_population_developments#Older_peple.E2.80.94_global_developments (accessed on 8 February 2021).
- Daykin, C.; Stavrakis, C.; Bogataj, D.; Risku, I.; Van den Bosch, J.; Woodall, J.; Economou, M.; Papamichail, M.; Gatenby, P.; Marcelloni, R.; et al. Meeting the Challenge of Ageing in the European Union. 2019. Available online: http://actuary.eu/ (accessed on 8 February 2021).
- World Health Organization. Life Expectancy at Age 60 Years. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/life-expectancy-at-age-60-(years) (accessed on 8 February 2021).
- World Health Organization. Health Systems that Meet the Needs of Older People. Available online: https://www.who.int/ageing/health-systems/en/ (accessed on 8 February 2021).
- World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 8 February 2021).
- Fernández-Carro, C. Ageing at home, co-residence or institutionalisation? Preferred care and residential arrangements of older adults in Spain. Ageing Soc. 2016, 36, 586–612. [Google Scholar] [CrossRef]
- Abellán García, A.; Aceituno Nieto, M.D.P.; Ramiro Fariñas, D.; Castillo Belmonte, A.B. Informes Estadísticas Sobre Residencias. Distribución de Centros y Plazas Residenciales por Provincia. Datos de Septiembre de 2020. 2021. Available online: http://envejecimientoenred.es/estadisticas-sobre-residencias-distribucion-de-centros-y-plazas-residenciales-por-provincia-datos-de-septiembre-de-2020/ (accessed on 8 February 2021).
- Abellán García, A.; Aceituno Nieto, M.D.P.; Castillo Belmonte, A.B.; Ramiro Fariñas, D. Nivel de Ocupación en Residencias de Personas Mayors. Available online: http://envejecimientoenred.es/nivel-de-ocupacion-en-residencias-de-personas-mayores/ (accessed on 9 February 2021).
- de Medeiros, M.M.D.; Carletti, T.M.; Magno, M.B.; Maia, L.C.; Cavalcanti, Y.W.; Rodrigues-Garcia, R.C.M. Does the institutionalization influence elderly’s quality of life? A systematic review and meta–analysis. BMC Geriatr. 2020, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Tuna, H.D.; Edeer, A.O.; Malkoc, M.; Aksakoglu, G. Effect of age and physical activity level on functional fitness in older adults. Eur. Rev. Aging Phys. Act. 2009, 6, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Riebe, D.; Blissmer, B.J.; Greaney, M.L.; Ewing Garber, C.; Lees, F.D.; Clark, P.G. The Relationship between Obesity, Physical Activity, and Physical Function in Older Adults. J. Aging Health 2009, 21, 1159–1178. [Google Scholar] [CrossRef] [PubMed]
- Durstine, J.L.; Gordon, B.; Wang, Z.; Luo, X. Chronic disease and the link to physical activity. J. Sport Health Sci. 2013, 2, 3–11. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health. Available online: https://www.who.int/dietphysicalactivity/physical-activity-recommendations-65years.pdf (accessed on 9 February 2021).
- World Health Organization. What Are the Main Risk Factors for Falls Amongst Older People and What Are the Most Effective Interventions to Prevent These Falls? 2004. Available online: https://www.euro.who.int/__data/assets/pdf_file/0018/74700/E82552.pdf (accessed on 9 February 2021).
- De La Cámara, M.Á.; Jiménez-Fuente, A.; Pardos, A.I. Falls in older adults: The new pandemic in the post COVID-19 era? Med. Hypotheses 2020, 145, 110321. [Google Scholar] [CrossRef]
- Agmon, M.; Shochat, T.; Kizony, R. Sleep quality is associated with walking under dual-task, but not single-task performance. Gait Posture 2016, 49, 127–131. [Google Scholar] [CrossRef]
- Miranda-Duro, M.D.C.; Nieto-Riveiro, L.; Concheiro-Moscoso, P.; Groba, B.; Pousada, T.; Canosa, N.; Pereira, J. Occupational Therapy and the Use of Technology on Older Adult Fall Prevention: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 702. [Google Scholar] [CrossRef]
- Godinho, C.; Domingos, J.; Cunha, G.; Santos, A.T.; Fernandes, R.M.; Abreu, D.; Gonçalves, N.; Matthews, H.; Isaacs, T.; Duffen, J.; et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J. Neuroeng. Rehabil. 2016, 13, 24. [Google Scholar] [CrossRef] [Green Version]
- Luna-Perejón, F.; Muñoz-Saavedra, L.; Civit-Masot, J.; Civit, A.; Domínguez-Morales, M. AnkFall—Falls, Falling Risks and Daily-Life Activities Dataset with an Ankle-Placed Accelerometer and Training Using Recurrent Neural Networks. Sensors 2021, 21, 1889. [Google Scholar] [CrossRef]
- Corrà, M.F.; Warmerdam, E.; Vila-Chã, N.; Maetzler, W.; Maia, L. Wearable Health Technology to Quantify the Functional Impact of Peripheral Neuropathy on Mobility in Parkinson’s Disease: A Systematic Review. Sensors 2020, 20, 6627. [Google Scholar] [CrossRef]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller, A.; et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef]
- Yang, C.-C.; Hsu, Y.-L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Saris, W.H.M.; Binkhorst, R.A. The use of pedometer and actometer in studying daily physical activity in man. Part I: Reliability of pedometer and actometer. Eur. J. Appl. Physiol. Occup. Physiol. 1977, 37, 219–228. [Google Scholar] [CrossRef]
- Strain, T.; Wijndaele, K.; Dempsey, P.C.; Sharp, S.J.; Pearce, M.; Jeon, J.; Lindsay, T.; Wareham, N.; Brage, S. Wearable-device-measured physical activity and future health risk. Nat. Med. 2020, 26, 1385–1391. [Google Scholar] [CrossRef]
- Zhou, H.; Al-Ali, F.; Rahemi, H.; Kulkarni, N.; Hamad, A.; Ibrahim, R.; Talal, T.; Najafi, B. Hemodialysis Impact on Motor Function beyond Aging and Diabetes—Objectively Assessing Gait and Balance by Wearable Technology. Sensors 2018, 18, 3939. [Google Scholar] [CrossRef] [Green Version]
- Silva de Lima, A.L.; Smits, T.; Darweesh, S.K.L.; Valenti, G.; Milosevic, M.; Pijl, M.; Baldus, H.; Vries, N.M.; Meinders, M.J.; Bloem, B.R. Home-Based Monitoring of Falls Using Wearable Sensors in Parkinson’s Disease. Mov. Disord. 2020, 35, 109–115. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Mazzà, C.; Lord, S.; Rochester, L. Free-living monitoring of Parkinson’s disease: Lessons from the field. Mov. Disord. 2016, 31, 1293–1313. [Google Scholar] [CrossRef]
- Rastogi, T.; Backes, A.; Schmitz, S.; Fagherazzi, G.; van Hees, V.; Malisoux, L. Advanced analytical methods to assess physical activity behaviour using accelerometer raw time series data: A protocol for a scoping review. Syst. Rev. 2020, 9, 259. [Google Scholar] [CrossRef]
- Scheers, T.; Philippaerts, R.; Lefevre, J. Assessment of physical activity and inactivity in multiple domains of daily life: A comparison between a computerized questionnaire and the SenseWear Armband complemented with an electronic diary. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hirdes, J.P.; Dubin, J.A.; Lee, J. Fall Risk Classification in Community-Dwelling Older Adults Using a Smart Wrist-Worn Device and the Resident Assessment Instrument-Home Care: Prospective Observational Study. JMIR Aging 2019, 2, e12153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Gwin, J. Fall detection and risk of falling assessment with wearable sensors. In Proceedings of the Conference on Wireless Health—WH ’12: Wireless Health 2012, San Diego, CA, USA, 22–25 October 2012; ACM Press: New York, NY, USA, 2012; pp. 1–2. [Google Scholar]
- Burton, E.; Hill, K.D.; Lautenschlager, N.T.; Thøgersen-Ntoumani, C.; Lewin, G.; Boyle, E.; Howie, E. Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people. BMC Geriatr. 2018, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.; Troutman-Jordan, M.; Hathaway, D.; Armstrong, S.; Moore, M. Acceptability of wristband activity trackers among community dwelling older adults. Geriatr. Nurs. 2015, 36, S21–S25. [Google Scholar] [CrossRef] [PubMed]
- Cadmus-Bertram, L.A.; Marcus, B.H.; Patterson, R.E.; Parker, B.A.; Morey, B.L. Randomized Trial of a Fitbit-Based Physical Activity Intervention for Women. Am. J. Prev. Med. 2015, 49, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.S.; Tiedemann, A.; Hassett, L.M.; Ramsay, E.; Kirkham, C.; Chagpar, S.; Sherrington, C. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc. Med. 2015, 1, e000013. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Yoshida, H.; Sasai, H.; Kojima, N.; Kim, H. Association between objectively measured sleep quality and physical function among community-dwelling oldest old Japanese: A cross-sectional study. Geriatr. Gerontol. Int. 2015, 15, 1040–1048. [Google Scholar] [CrossRef]
- Schlomann, A. A case study on older adults’ long-term use of an activity tracker. Gerontechnology 2017, 16, 115–124. [Google Scholar] [CrossRef]
- Steinert, A.; Haesner, M.; Steinhagen-Thiessen, E. Activity-tracking devices for older adults: Comparison and preferences. Univers. Access Inf. Soc. 2018, 17, 411–419. [Google Scholar] [CrossRef]
- Puri, A.; Kim, B.; Nguyen, O.; Stolee, P.; Tung, J.; Lee, J. User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR mHealth uHealth 2017, 5, e173. [Google Scholar] [CrossRef] [Green Version]
- Mercer, K.; Giangregorio, L.; Schneider, E.; Chilana, P.; Li, M.; Grindrod, K. Acceptance of Commercially Available Wearable Activity Trackers Among Adults Aged Over 50 and With Chronic Illness: A Mixed-Methods Evaluation. JMIR mHealth uHealth 2016, 4, e7. [Google Scholar] [CrossRef]
- Peng, W.; Li, L.; Kononova, A.; Cotten, S.; Kamp, K.; Bowen, M. Habit Formation in Wearable Activity Tracker Use Among Older Adults: Qualitative Study. JMIR mHealth uHealth 2021, 9, e22488. [Google Scholar] [CrossRef]
- Degroote, L.; Hamerlinck, G.; Poels, K.; Maher, C.; Crombez, G.; De Bourdeaudhuij, I.; Vandendriessche, A.; Curtis, R.G.; DeSmet, A. Low-Cost Consumer-Based Trackers to Measure Physical Activity and Sleep Duration Among Adults in Free-Living Conditions: Validation Study. JMIR mHealth uHealth 2020, 8, e16674. [Google Scholar] [CrossRef] [PubMed]
- El-Amrawy, F.; Nounou, M.I. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc. Inform. Res. 2015, 21, 315. [Google Scholar] [CrossRef] [PubMed]
- Mičková E, Machová K, Daďová K, Svobodová I. Does Dog Ownership Affect Physical Activity, Sleep, and Self-Reported Health in Older Adults? Int. J. Environ. Res. Public Health 2019, 16, 3355. [CrossRef] [Green Version]
- Tudor-Locke, C.; Craig, C.L.; Aoyagi, Y.; Bell, R.C.; Croteau, K.A.; De Bourdeaudhuij, I.; Ewald, B.; Gardner, A.W.; Hatano, Y.; Lutes, L.D.; et al. How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto-Riveiro, L.; Groba, B.; Miranda, M.C.; Concheiro, P.; Pazos, A.; Pousada, T.; Pereira, J. Technologies for participatory medicine and health promotion in the elderly population. Medicine 2018, 97, e10791. [Google Scholar] [CrossRef]
- Miranda Duro, M.D.C.; Nieto-Riveiro, L.; Concheiro-Moscoso, P.; Groba, B.; Pousada, T.; Canosa, N.; Pereira, J. Older Adults Daily Activity and Risk of Falling in Spanish Care Facilities using Xiaomi Mi Band 2. Mendeley Data 2021. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. MD State Med. J. 1965, 14, 61–65. [Google Scholar]
- Tinetti, M.E.; Williams, T.F.; Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef]
- EuroQol Foundation Research. EQ-5D-5L User Guide. 2019. Available online: https://euroqol.org/publications/user-guides (accessed on 9 February 2021).
- Sleep Foundation How Much Sleep Do We Really Need? | Sleep Foundation. Available online: https://www.sleepfoundation.org/how-sleep-works/how-much-sleep-do-we-really-need (accessed on 8 March 2021).
- I.B.M. Knowledge Center. Generalized Linear Models. Available online: https://www.ibm.com/docs/es/spss-statistics/25.0.0?topic=models-generalized-linear (accessed on 5 March 2021).
- Paterson, D.H.; Warburton, D.E. Physical activity and functional limitations in older adults: A systematic review related to Canada’s Physical Activity Guidelines. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Sherrington, C.; Whitney, J.C.; Lord, S.R.; Herbert, R.D.; Cumming, R.G.; Close, J.C.T. Effective Exercise for the Prevention of Falls: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2008, 56, 2234–2243. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Haines, T.P.; Lee, D.-C.A.; O’Connell, B.; McDermott, F.; Hoffmann, T. Why do hospitalized older adults take risks that may lead to falls? Heal. Expect. 2015, 18, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.A.; Hill, K.D.; Blackberry, I.; Day, L.L.; Dharmage, S.C. Falls Risk and Functional Decline in Older Fallers Discharged Directly from Emergency Departments. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1090–1095. [Google Scholar] [CrossRef] [Green Version]
- Štefan, L.; Vrgoč, G.; Rupčić, T.; Sporiš, G.; Sekulić, D. Sleep Duration and Sleep Quality Are Associated with Physical Activity in Elderly People Living in Nursing Homes. Int. J. Environ. Res. Public Health 2018, 15, 2512. [Google Scholar] [CrossRef] [Green Version]
- Zisberg, A.; Gur-Yaish, N.; Shochat, T. Contribution of Routine to Sleep Quality in Community Elderly. Sleep 2010, 33, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Hopman Rock, M. New Ways to Promote Physical Activity in Residential Care. J. Gerontol. Geriatr. Res. 2017, 06. [Google Scholar] [CrossRef] [Green Version]
Characteristic | N (%)/Mean (±SD) |
---|---|
Age | 84 (±8.71) |
Women | 16 (51.6%) |
Residing in a nursing home | 28 (90.3%) |
Widow | 28 (83.9%) |
Overweight | 22 (71%) |
Problems of physical conditions | 17 (54.8%) |
Cognitive impairment | 20 (64.5%) |
Dependency in basic daily activities | 24 (77.4%) |
Risk of falling | 21 (67.7%) |
Take fewer than 3000 daily steps | 27 (87.1%) |
Sleep less than 420–480 daily minutes | 17 (54.83%) |
Use of mobility aids | 13 (41.9%) |
EQ-5D-5L VAS > 50 | 26 (12.9%) |
EQ-5D-5L VAS | EQ-5D-5L Index | EQ-5D-5L Severity Index | |
---|---|---|---|
Mean | 69 | 0.68 | 22 |
Standard deviation | ±15 | ±0.25 | ±18 |
Minimum | 40 | 0.03 | 0 |
Maximum | 100 | 1 | 65 |
Dependent Variables | Independent Variables | |||||
---|---|---|---|---|---|---|
Daily Steps | Daily Distance | Daily Deep Sleep | Daily Shallow Sleep | Daily Total Sleep | Daily Awake Time at Night | |
Risk of falling | a ** | a ** | a | a | a | a * |
Yes | 720 (±480) | 446 (±61) | 150 (±67) | 271 (±93) | 360 (±118) | 56 (±44) |
No | 3366 (±2139) | 2161 (±477) | 174 (±20) | 303 (±83) | 421 (±85) | 19 (±11) |
Level of dependency in B.A.D.L. | b *** | b ** | b ** | a | a | a |
Yes | 696 (2593) | 449 (1651) | 164 (180) | 285 (385) | 360 (533) | 151 (17) |
No | 4509 (7213) | 3008 (4817) | 180 (149) | 303 (252) | 446 (141) | 17 (41) |
Cognitive impairment | a | a | b | b | b | a |
Yes | 1915 (±2048) | 1232 (±1381) | 174 (264) | 308 (278) | 390 (209) | 46 (±42) |
No | 953 (±834) | 569 (±507) | 102 (186) | 261 (385) | 363 (533) | 42 (±39) |
Dependent Variables | Independent Variables | |||||
---|---|---|---|---|---|---|
Daily Steps | Daily Distance Covered | Daily Deep Sleep | Daily Shallow Sleep | Daily Total Sleep | Daily Awake Time at Night | |
Mobility | b ** | b ** | a | a ** | a | b |
Any problem | 683 (4363) | 435 (2927) | 147 (±68) | 255 (±91) | 354 (±117) | 27 (151) |
No problem | 2503 (7256) | 1654 (4849) | 183 (±57) | 345 (±43) | 440 (±67) | 22 (102) |
Self-care | b *** | b *** | a | a | a | b |
Any Problem | 2339 (7256) | 1543 (4849) | 174 (±59) | 317 (±61) | 424 (±67) | 19 (105) |
No problem | 519 (1774) | 316 (980) | 147 (±70) | 258 (±98) | 351 (±125) | 27 (151) |
Usual activities | a * | a * | b | b | b * | a |
Any Problem | 2435 (±2095) | 1534 (±1442) | 169 (247) | 308 (224) | 420 (307) | 159 (±71) |
No problem | 864 (±1036) | 558 (±691) | 173 (226) | 252 (385) | 360 (533) | 157 (±64) |
Pain and discomfort | b ** | b ** | b | b ** | b * | a |
Any problem | 1263 (7500) | 799 (5021) | 176 (264) | 326 (215) | 420 (294) | 43 (±41) |
No problem | 661 (1774) | 433 (914) | 160 (209) | 248 (385) | 360 (533) | 46 (±41) |
Anxiety and/or depression | b | b | a | b | a | b |
Any problem | 830 (4834) | 513 (3256) | 159 (±59) | 312 (346) | 389 (±120) | 24 (121) |
No problem | 751 (7796) | 462 (5224) | 157 (±72) | 281 (282) | 378 (±108) | 27 (150) |
Dependent Variable | Independent Variable | OR 95% CI | Cox and Snell R2 | Nagelkerke R2 |
---|---|---|---|---|
No risk of falling | Daily steps | 1.004 (1.001–1.008) * | 0.570 | 0.796 |
Daily distance covered | 1.006 (1.001–1.011) * | 0.534 | 0.746 | |
Daily awake time at night | 0.913 (0.843–0.989) * | 0.346 | 0.483 | |
Independency on B.A.D.L. | Daily steps | 1.001 (1.000–1.003) * | 0.375 | 0.571 |
Distance daily covered | 1.002 (1.000–1.004) * | 0.388 | 0.591 | |
Daily deep sleep | 1.014 (0.995–1.033) | 0.124 | 0.189 | |
EQ-5D-5L Mobility dimension–no problems | Daily steps | 1.085 (0.926–1.272) ** | 0.411 | 0.587 |
Daily distance covered | 1.002 (1.001–1.004) ** | 0.420 | 0.599 | |
Daily shallow sleep | 1.024 (1.003–1.045) * | 0.334 | 0.477 | |
EQ-5D-5L Self-care dimension–no problems | Daily steps | 0.998 (0.996–1.000) * | 0.424 | 0.576 |
Daily distance covered | 1.088 (0.811–1.460) * | 0.453 | 0.615 | |
EQ-5D-5L Usual activities dimension–no problems | Daily steps | 0.999 (0.998–1.000) * | 0.261 | 0.349 |
Daily distance covered | 0.999 (0.997–1.000) | 0.233 | 0.312 | |
Daily total sleep | 0.994 (0.985–1.003) | 0.106 | 0.142 | |
EQ-5D-5L Pain and Discomfort dimension–no problems | Daily steps | 0.999 (0.997–1.000) | 0.321 | 0.428 |
Daily distance covered | 0.998 (0.995–1.000) | 0.352 | 0.469 | |
Daily shallow sleep | 0.986 (0.974–0.999) * | 0.303 | 0.404 | |
Daily total sleep | 0.993 (0.983–1.003) | 0.225 | 0.300 |
Predictor | OR 95% CI |
---|---|
Risk of falling | 0.312 (0.161–0.568) *** |
Any level of dependence on basic daily activities | 0.567 (0.281–1.150) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Duro, M.d.C.; Nieto-Riveiro, L.; Concheiro-Moscoso, P.; Groba, B.; Pousada, T.; Canosa, N.; Pereira, J. Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2. Sensors 2021, 21, 3341. https://doi.org/10.3390/s21103341
Miranda-Duro MdC, Nieto-Riveiro L, Concheiro-Moscoso P, Groba B, Pousada T, Canosa N, Pereira J. Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2. Sensors. 2021; 21(10):3341. https://doi.org/10.3390/s21103341
Chicago/Turabian StyleMiranda-Duro, María del Carmen, Laura Nieto-Riveiro, Patricia Concheiro-Moscoso, Betania Groba, Thais Pousada, Nereida Canosa, and Javier Pereira. 2021. "Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2" Sensors 21, no. 10: 3341. https://doi.org/10.3390/s21103341
APA StyleMiranda-Duro, M. d. C., Nieto-Riveiro, L., Concheiro-Moscoso, P., Groba, B., Pousada, T., Canosa, N., & Pereira, J. (2021). Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2. Sensors, 21(10), 3341. https://doi.org/10.3390/s21103341