A Review on Advanced Sensing Materials for Agricultural Gas Sensors
Abstract
:1. Introduction
2. Sensing Materials for Target Analyte Detection
2.1. Ethylene Detection
2.2. Carbon Dioxide Detection
2.3. Hydrogen Sulfide Detection
2.4. Ethanol Detection
2.5. Humidity Detection
3. Deposition Methods
Sensing Material | Target Analyte | Sensing Technology | Deposition Method | Material Thickness | Dynamic Range & Limit of Detection | Recovery Time | Operating Temperature | Long-Term Stability | Sensitivity (Output/Input) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
BMIM-NTf | Ethylene | Amperometric | Drop-coating | 63 µm | 760 ppb–10 ppm | - | 22 °C | - | 51 pA/ppm | [35] |
Porous ZnO NS | Ethylene | Chemiresistive | Dip-coating | 10 nm | 5–2000 ppm | 20 s | 350–500 °C | 30 days | 0.6 µA/ppm | [43] |
LaFeO | Ethylene | Chemiresistive | Screen printing | 37–38.3 µm | 25–5000 ppm | ~1 s | 20–200 °C | - | /ppm | [80,81] |
SWCNTs | Ethylene | Chemiresistive | - | 1 µL | 0.5–50 ppm | - | 4 °C | 16 days | 1.2%R/ppm | [45] |
SnO nanoparticles | Ethylene | Chemicapacitive | Dip-coating/Sputtering | 1300 nm | 20–100 ppm | ~10 s | 22 °C | - | 0.0531 pF/ppm | [27] |
PtTiO | Ethylene | Magnetoelastic | Dip-Coating | 31–155 nm | 0.5–50 ppm | - | 19 °C | - | 8.5 Hz/ppm | [44] |
ZnO | CO | Chemiresistive | Spray pyrolysis | 8.3 nm | 50–1000 ppm | 100 s | 300 °C | - | 800 /ppm | [48] |
PEDOT PSS/graphene | CO | Chemiresistive | Calibrated spreader | 10 µm | 4.7–4500 ppm | - | 35–65 °C | - | 0.004–0.0047%R/%RH | [51] |
TiO coated g-CN NS | CO | Chemiresistive | Drop-coating | 30 nm | 100–2500 ppm | 35 s | 22 °C | 60 days | 406 /ppm | [50] |
CeO | CO | Chemiresistive | Drop-coating | 170–210 nm diam. | 150–2400 ppm | ~1 s | 100–250 °C | - | /ppm | [49] |
EMIM[NTF] | CO | Chemicapacitive | Dip-coating | <1 µm | 50,000–1,000,000 ppm | 38.5 s | Room temperature | - | 29 pF/ppm | [52] |
HPTS | CO | Fibre-Optic | Dip-coating | >1 µm | 300–300,000 ppm | 50–100 s | 22 °C | - | 0.00055 a.u./ppm | [54] |
mPEI | CO | Resonator | Spin coating | - | 0.011% | - | - | - | 8 Hz/ppm | [29] |
CuO,FeO | HS | Amperometric | - | - | 10ppm | - | −15 °C–65 °C | - | 700 µA/ppm | [57] |
CNTs/SnO/CuO | HS | Chemiresistive | Spin-coating | >6 nm | 10–80 ppm | 10 min | 25 °C | - | /ppm | [32] |
SnO nanofibres | HS | Chemiresistive | Electro-spinning | 150 nm diam. | 0.1–1 ppm | 230 s | 200–350 °C | - | 970 /ppm | [56] |
ZnSnO NS | HS | Chemiresistive | Dip-coating | 100 nm | 5–1000 ppb | 1300 s | 133–170 °C | 60 days | /ppb | [59] |
InO | HS | Chemiresistive | Dip-coating | 100 um | 5 ppb | 5 min | 25–100 °C | 30 days | /ppm | [55] |
WO, PPy | HS | Chemiresistive | - | 50–100 nm | 200 ppm | >1 day | 90 °C | - | 490 µV/ppm | [58] |
SWCNTs | HS | Chemiresistive | Spin-coating | 1–2 nm diam. | 5 ppm–150 ppm | 10–15 s | 20 °C | - | 0.47%R/ppm | [61] |
ZnO Nanowires | Ethanol | Chemiresistive | Spin-coating | 25 nm diam. | 1–200 ppm | 120 s | 300 °C | - | 644 /ppm | [82] |
SnS | Ethanol | Chemiresistive | - | - | 10 ppm | 9 s | 200 °C | 6 weeks | 0.27–13.5%R/ppm | [63] |
Pd/TiO | Ethanol | Chemicapacitive | Nanorod growth | 710–750 nm | 1–100 ppm | 2.4–3.8 s | 100 °C | - | 7.5%C/ppm | [62] |
SiO/Si NW | Ethanol | MGFET | vapor-liquid-sold growth | 16 nm diam. | 26–2000 ppm | 4 min | 60 °C | - | 16–40 pA/ppm | [64,83] |
PSAA | Ethanol | Resonator | Drop-coating | 19.9 nm | 13.3 ppm | 20 min | 24 °C | - | 1.5 Hz/ppm | [84] |
CuO particles | Water Vapor | Chemiresistive | Drop-coating | 140 µm | 33–90%RH | - | 22 °C | - | 0.5– 30 /%RH | [67] |
WS NS | Water Vapor | Chemiresistive | Drop-coating | 6 nm | 8–85%RH | 30–140 s | - | several weeks | 580 /%RH | [75] |
MWCNTs-CS | Water Vapor | Chemiresistive | - | - | 11–95%RH | - | Room temperature | - | /%RH | [68] |
MWCNTs-PLL | Water Vapor | Chemiresistive | Drop-coating | - | 0–91.5%RH | - | Room temperature | - | /%RH | [68] |
MoS/ND | Water Vapor | Chemicapacitive | - | - | 11–97%RH | - | Room temperature | - | 6.5 nF/%RH | [74] |
SPEEK | Water Vapor | Impedance-based | Drop-coating | 20 µm | 11–95%RH | 130 s | 22 °C | 30 days | 12– 120 /%RH | [85] |
TiO Nanowires | Water Vapor | Impedance-based | Dip-coating | 40–50 nm | 12–97%RH | <2 min | 17–35 °C | 250 days | 144 /%RH | [86] |
Silica/di-ureasil FBG | Water Vapor | Fibre-Optic | Dip-coating | 450–591 µm | 5–95%RH | - | 5–40 °C | 1 year | 1.25–7.14 pm/%RH | [87] |
PI | Water Vapor | Fibre-Optic | Dip-coating | 450–591 µm | 5-95%RH | - | −15–20 °C | - | 1.85–2.25 pm/%RH | [88] |
AlO /PSS nano-film | Water Vapor | Fibre-Optic | ESA | 84nm | 22–39%RH | - | 24.5 °C | - | 1.43 nm/%RH | [89] |
SiO | Water Vapor | Fibre-Optic | ESA | 300 nm | 20–80%RH | 150ms | 10–40 °C | - | 67.33–451.78 pm/%RH | [90] |
CaCl | Water Vapor | Fibre-Optic | - | 3 µm | 55–95%RH | - | 30 °C | - | 1.36 nm/%RH | [91] |
CoCl | Water Vapor | Fibre-Optic | Drop-coating | 10 µm | 50–95%RH | ~40 s | 25 °C | - | 67–200 pm/%RH | [92] |
HEC/PVDF | Water Vapor | Fibre-Optic | Dip-impregnation | - | 40–90%RH | - | 28 °C | - | 0.196 dB/%RH | [93] |
PAA Nanowires | Water Vapor | Fibre-Optic | Electrospinning | - | 30–95%RH | 210 ms | 25 °C | - | 0.01 dB/%RH | [94] |
ZnO Nanorods | Water Vapor | Fibre-Optic | Dip-coating | 2.5 µm | 10–95%RH | - | 25 °C | - | 0.0007–0.0057%P/%RH | [95] |
PVA | Water Vapor | Fibre-Optic | Dip-coating | 8 µm | 20–95%RH | 500 ms | 20–100 °C | 7 days | 25–980 pm/%RH | [72,96,97,98] |
PEO | Water Vapor | Fibre-Optic | Dip-coating | - | 85–90%RH | ~1 s | 22 °C | - | 1.17 dB/%RH | [99] |
Silica/methylene blue | Water Vapor | Fibre-Optic | Dip-coating | - | 1.1-4.1%RH | <30 s | 18 °C | - | 0.0087 a.u./%RH | [100] |
Ag-Polyaniline | Water Vapor | Fibre-Optic | Dip-coating | 15–30 nm diam. | 5-95%RH | 90s | 25–30 °C | - | 10–29 mV/%RH | [101] |
PGA/poly-lysine | Water Vapor | Fibre-Optic | Soaked in polymer | 1 µm | 50–92.9%RH | 5.8 s | - | - | 0.01 dBm/%RH | [102] |
ZnO | Water Vapor | Fibre-Optic | Dip/Spin-coating | 70–80 nm diam. | 5–50%RH | 35 s | 22 °C | - | 0.45%dB/%RH | [103] |
Co/Polyaniline | Water Vapor | Fibre-Optic | Dip-coating | 10.4 µm | 20–92%RH | 1 min | 30 °C | - | 0.024–3.406 mV/%RH | [104] |
Gelatin | Water Vapor | Fibre-Optic | Dip-coating | 80 nm | 9–94%RH | ~50 s | 22 °C | - | 0.167 dBm/%RH | [105] |
Chitosan | Water Vapor | Fibre-Optic | Dip-coating | - | 20–80%RH | - | 25 °C | - | 81 pm/%RH | [106] |
4. Conclusions
4.1. Sensing Materials
4.2. Deposition Techniques
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z. Statistical Overview of the Canadian Greenhouse Vegetable Industry 2015 Prepared by: Market Analysis and Information Section Horticulture and Cross Sectoral Division Agriculture and Agri-Food Canada; Technical Report; Agriculture and Agri-Food Canada: Guelph, ON, Canada, 2016. [Google Scholar]
- Jansen, R.; Takayama, K.; Wildt, J.; Hofstee, J.W.; Bouwmeester, H.; van Henten, E. Monitoring Crop Health Status at Greenhouse Scale on the Basis of Volatiles Emitted from the Plants. Environ. Control Biol. 2009, 47, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Burg, S.P.; Burg, E.A. Role of Ethylene in Fruit Ripening. Plant Physiol. 1962, 37, 179–189. [Google Scholar] [CrossRef]
- Roy, J.K.; Akram, R.; Shuvo, M.A.F.; Khatun, H.; Awal, M.S.; Sarker, M. Effect of Ethanol Vapor on Ripening of Tomato. Agric. Eng. Int. CIGR J. 2017, 19, 168–175. [Google Scholar]
- Kawamitsu, Y.; Yoda, S.; Agata, W. Humidity Pretreatment Affects the Responses of Stomata and CO2 Assimilation to Vapor Pressure Difference in C3 and C4 Plants. Plant Cell Physiol. 1993, 34, 113–119. [Google Scholar] [CrossRef]
- Blom, T.J.; Straver, W.A.; Ingratta, F.J.; Khosla, S.; Brown, W. Carbon Dioxide in Greenhouses; Technical Report 11; Ontario Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2012. [Google Scholar] [CrossRef]
- Goldammer, T. Greenhouse Management: A Guide to Operations and Technology; Apex Publishers: Centreville, VA, USA, 2019. [Google Scholar]
- Runkle, E. Greenhouse Product News. Greenh. Prod. News 2015, 25, 54. [Google Scholar]
- Ministry of Agriculture, Food and Rural Affairs. Growing Greenhouse Vegetables in Ontario, 836th ed.; Ministry of Agriculture, Food and Rural Affairs: Toronto, ON, Canada, 2010. [Google Scholar]
- Shimono, H.; Kondo, M.; Evans, J.R. Internal transport of CO2 from the root-zone to plant shoot is pH dependent. Physiol. Plant. 2019, 165, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Rawson, H.M.; Begg, J.E.; Woodward, R.G. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 1977, 134, 5–10. [Google Scholar] [CrossRef]
- Ciliberti, N.; Fermaud, M.; Roudet, J.; Rossi, V. Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathology 2015, 105, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Kopriva, S. Plant sulfur nutrition: From sachs to big data. Plant Signal. Behav. 2015, 10, e1055436. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Nawaz, A.; Ejaz, S.; Haider, S.T.A.; Alam, M.W.; Javed, H.U. Effects of hydrogen sulfide on postharvest physiology of fruits and vegetables: An overview. Sci. Hortic. 2019, 243, 290–299. [Google Scholar] [CrossRef]
- Corcuff, R.; Arul, J.; Hamza, F.; Castaigne, F.; Makhlouf, J. Storage of broccoli florets in ethanol vapor enriched atmospheres. Postharvest Biol. Technol. 1996, 7, 219–229. [Google Scholar] [CrossRef]
- Bodbodak, S.; Moshfeghifar, M. 2-Advances in controlled atmosphere storage of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 39–76. [Google Scholar] [CrossRef]
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.K.; Prange, R.K.; Bancroft, R.; Puttongsiri, T. Controlled Atmosphere Storage of Fruit and Vegetables, 3rd ed.; CABI: Wallingford, UK, 2018. [Google Scholar]
- Eggins, B.R. Chemical Sensors and Biosensors; John Wiley & Sons: Chichester, UK, 2002; Volume 2. [Google Scholar]
- Balasingam, J.A.; Swaminathan, S.; Nazemi, H.; Love, C.; Birjis, Y.; Emadi, A. Chemical Sensors: Gas Sensors, Acoustic Sensors. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Rayl, M.; Wojtowicz, P.J.; Hanson, H.D. Magnetic gas sensor. AIP Conf. Proc. 1976, 29, 628–629. [Google Scholar] [CrossRef]
- Janata, J. Principles of Chemical Sensors; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Reglero Ruiz, J.A.; Sanjuán, A.M.; Vallejos, S.; García, F.C.; García, J.M. Smart Polymers in Micro and Nano Sensory Devices. Chemosensors 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Nazemi, H.; Balasingam, J.A.; Swaminathan, S.; Ambrose, K.; Nathani, M.U.; Ahmadi, T.; Lopez, Y.B.; Emadi, A. Mass sensors based on capacitive and piezoelectric micromachined ultrasonic transducers—CMUT and PMUT. Sensors 2020, 20, 2010. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, D.; Yang, A.; Wang, D.; Zong, X. Fabrication of polypyrrole/graphene oxide hybrid nanocomposite for ultrasensitive humidity sensing with unprecedented sensitivity. J. Mater. Sci. Mater. Electron. 2019, 30, 4967–4976. [Google Scholar] [CrossRef]
- Agarwal, M.; Balachandran, M.D.; Shrestha, S.; Varahramyan, K. SnO2 nanoparticle-based passive capacitive sensor for ethylene detection. J. Nanomater. 2012, 2012, 145406. [Google Scholar] [CrossRef]
- Ding, B.; Yamazaki, M.; Shiratori, S. Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sens. Actuators Chem. 2005, 106, 477–483. [Google Scholar] [CrossRef]
- Barauskas, D.; Pelenis, D.; Vanagas, G.; Viržonis, D.; Baltrušaitis, J. Methylated poly(Ethylene)imine modified capacitive micromachined ultrasonic transducer for measurements of CO2 and SO2 in their mixtures. Sensors 2019, 19, 3236. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, V.; Alfano, B.; Di Capua, R.; Alfé, M.; Vorokhta, M.; Polichetti, T.; Massera, E.; Miglietta, M.L.; Schiattarella, C.; Di Francia, G. Graphene-like layers as promising chemiresistive sensing material for detection of alcohols at low concentration. J. Appl. Phys. 2018, 123, 024503. [Google Scholar] [CrossRef]
- Qi, P.; Xu, Z.; Zhang, T.; Fei, T.; Wang, R. Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. J. Colloid Interface Sci. 2020, 560, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, J.; Wang, Y.; Chen, Z. A Highly Sensitive and Room Temperature CNTs/SnO2/CuO Sensor for H2S Gas Sensing Applications. Nanoscale Res. Lett. 2020, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhu, S.; Dong, X.; Yao, Y.; Guo, Y.; Gu, S.; Zhou, Z. A facile method to graphene oxide/polyaniline nanocomposite with sandwich-like structure for enhanced electrical properties of humidity detection. Anal. Chim. Acta 2019, 1080, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, J.; Wu, H.; Yu, J.; Jia, J.; Xu, W.; Fu, Y.; He, Q.; Cao, H.; Cheng, J. A highly fluorescent post-modified metal organic framework probe for selective, reversible and rapid carbon dioxide detection. Dyes Pigment. 2020, 172, 107798. [Google Scholar] [CrossRef]
- Zevenbergen, M.A.; Wouters, D.; Dam, V.A.T.; Brongersma, S.H.; Crego-Calama, M. Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Anal. Chem. 2011, 83, 6300–6307. [Google Scholar] [CrossRef]
- Rheaume, J.M.; Pisano, A.P. A review of recent progress in sensing of gas concentration by impedance change. Ionics 2011, 17, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Hoa, N.D.; Duy, N.V.; El-Safty, S.A.; Hieu, N.V. Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J. Nanomater. 2015, 2015, 972025. [Google Scholar] [CrossRef] [Green Version]
- Suehle, J.S.; Cavicchi, R.E.; Gaitan, M.; Semancik, S. Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing. IEEE Electron Device Lett. 1993, 14, 118–120. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.Y.; Sakai, G.; Shimanoe, K.; Miura, N.; Lee, D.D.; Yamazoe, N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens. Actuators B Chem. 1998, 46, 139–145. [Google Scholar] [CrossRef]
- Bae, H.Y.; Choi, G.M. Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method. Sens. Actuators B Chem. 1999, 55, 47–54. [Google Scholar]
- Zhu, W.B.; Wei, T.B.; Fan, Y.Q.; Qu, W.J.; Zhu, W.; Ma, X.Q.; Yao, H.; Zhang, Y.M.; Lin, Q. A pillar[5]arene-based and OH-dependent dual-channel supramolecular chemosensor for recyclable CO2 gas detection: High sensitive and selective off-on-off response. Dyes Pigment. 2020, 174, 108073. [Google Scholar] [CrossRef]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E. CHAPTER 3-The Biosynthesis of Ethylene. In Ethylene in Plant Biology, 2nd ed.; Abeles, F.B., Morgan, P.W., Saltveit, M.E., Eds.; Academic Press: New York, NY, USA, 1992; pp. 26–55. [Google Scholar] [CrossRef]
- Wang, L.P.; Jin, Z.; Luo, T.; Ding, Y.; Liu, J.H.; Wang, X.F.; Li, M.Q. The detection of ethylene using porous ZnO nanosheets: Utility in the determination of fruit ripeness. New J. Chem. 2019, 43, 3619–3624. [Google Scholar] [CrossRef]
- Zhang, R.; Tejedor, M.I.; Anderson, M.A.; Paulose, M.; Grimes, C.A. Ethylene Detection Using Nanoporous PtTiO2 Coatings Applied to Magnetoelastic Thick Films. Sensors 2002, 2, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Fong, D.; Luo, S.X.; Andre, R.S.; Swager, T.M. Trace Ethylene Sensing via Wacker Oxidation. Acs Cent. Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Swager, T.M. Covalent Functionalization of Carbon Nanomaterials with Iodonium Salts. Chem. Mater. 2016, 28, 8542–8549. [Google Scholar] [CrossRef]
- Sun, M.; Yang, X.; Zhang, Y.; Wang, S.; Wong, M.W.; Ni, R.; Huang, D. Rapid and Visual Detection and Quantitation of Ethylene Released from Ripening Fruits: The New Use of Grubbs Catalyst. J. Agric. Food Chem. 2019, 67, 507–513. [Google Scholar] [CrossRef]
- Karthik, T.V.; Hernández, A.G.; Kudriavtsev, Y.; Gómez-Pozos, H.; Ramírez-Cruz, M.G.; Martínez-Ayala, L.; Escobosa-Echvarria, A. Sprayed ZnO thin films for gas sensing: Effect of substrate temperature, molarity and precursor solution. J. Mater. Sci. Mater. Electron. 2020, 1–11. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Dippel, A.C.; Volanti, D.P.; Koziej, D. Low-Temperature Carbon Dioxide Gas Sensor Based on Yolk-Shell Ceria Nanospheres. ACS Appl. Mater. Interfaces 2020, 12, 17745–17751. [Google Scholar] [CrossRef]
- Karthik, P.; Gowthaman, P.; Venkatachalam, M.; Saroja, M. Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas. Inorg. Chem. Commun. 2020, 119, 108060. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Pasquale, G.D.; Pollicino, A.; Graziani, S.; Gugliuzzo, C.; Lombardo, C.; Marletta, V. Direct printing of a multi-layer sensor on PET substrate for CO2 detection. Energies 2019, 12, 557. [Google Scholar] [CrossRef] [Green Version]
- Bhide, A.; Jagannath, B.; Tanak, A.; Willis, R.; Prasad, S. CLIP: Carbon Dioxide testing suitable for Low power microelectronics and IOT interfaces using Room temperature Ionic Liquid Platform. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Park, K.K.; Kupnik, M.; Melosh, N.A.; Khuri-Yakub, B.T. Mesoporous Thin-Film on Highly-Sensitive Resonant Chemical Sensor for Relative Humidity and CO2 Detection. Anal. Chem. 2012, 84, 3063–3066. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.S.; Lo, Y.L. Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS. Sens. Actuators B Chem. 2008, 129, 120–125. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Sun, M.; Li, H.; Wu, Z.; Wang, J.; Shen, W.; Fu, Y.Q. Significantly enhanced temperature-dependent selectivity for NO2 and H2S detection based on In2O3 nano-cubes prepared by CTAB assisted solvothermal process. J. Alloys Compd. 2020, 816, 152518. [Google Scholar] [CrossRef]
- Phuoc, P.H.; Hung, C.M.; Van Toan, N.; Van Duy, N.; Hoa, N.D.; Van Hieu, N. One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection. Sens. Actuators A Phys. 2020, 303, 111722. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, H.; Xue, K.; Chen, L.; Shi, C.; Wang, D.; Li, J.; Wang, X.; Cui, G. H2S detection at low temperatures by Cu2O/Fe2O3 heterostructure ordered array sensors. RSC Adv. 2020, 10, 8332–8339. [Google Scholar] [CrossRef] [Green Version]
- Geng, L. Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met. 2010, 160, 1708–1711. [Google Scholar] [CrossRef]
- Xu, T.T.; Zhang, X.F.; Dong, X.; Deng, Z.P.; Huo, L.H.; Gao, S. Enhanced H2S gas-sensing performance of Zn2SnO4 hierarchical quasi-microspheres constructed from nanosheets and octahedra. J. Hazard. Mater. 2019, 361, 49–55. [Google Scholar] [CrossRef]
- Virji, S.; Fowler, J.D.; Baker, C.O.; Huang, J.; Kaner, R.B.; Weiller, B.H. Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide. Small 2005, 1, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Sheikhi, M.H.; Pourfath, M.; Moradi, M. High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sens. Actuators B Chem. 2015, 210, 1–8. [Google Scholar] [CrossRef]
- Dutta, K.; Bhowmik, B.; Bhattacharyya, P. Resonant Frequency Tuning Technique for Selective Detection of Alcohols by TiO2 Nanorod-Based Capacitive Device. IEEE Trans. Nanotechnol. 2017, 16, 820–825. [Google Scholar] [CrossRef]
- Afsar, M.F.; Rafiq, M.A.; Tok, A.I. Two-dimensional SnS nanoflakes: Synthesis and application to acetone and alcohol sensors. RSC Adv. 2017, 7, 21556–21566. [Google Scholar] [CrossRef] [Green Version]
- Shalev, G. The Electrostatically Formed Nanowire: A Novel Platform for Gas-Sensing Applications. Sensors 2017, 17, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, I.; Eom, G.; Lee, S.; Kim, B.K.; Kim, S.K.; Lee, H.J. A capacitive micromachined ultrasonic transducer-based resonant sensor array for portable volatile organic compound detection with wireless systems. Sensors 2019, 19, 1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Li, C.; Pei, K.; Zhao, K.; Zhao, Z.K.; Li, H. Ionic liquids used as QCM coating materials for the detection of alcohols. Sens. Actuators B Chem. 2008, 134, 258–265. [Google Scholar] [CrossRef]
- Malook, K.; Khan, H.; Ali, M.; Ihsan-Ul-Haque. Investigation of room temperature humidity sensing performance of mesoporous CuO particles. Mater. Sci. Semicond. Process. 2020, 113, 105021. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, Z.; Duan, Z.; Jiang, Y.; Li, X.; Li, Z.; Tai, H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens. Actuators B Chem. 2019, 289, 182–185. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.; Arregui, F.; Matias, I. Recent Developments in Fiber Optics Humidity Sensors. Sensors 2017, 17, 893. [Google Scholar] [CrossRef] [Green Version]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K. Fibre optic long period grating-based humidity sensor probe using a Michelson interferometric arrangement. Sens. Actuators B Chem. 2013, 178, 694–699. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y.; Jiang, Y.; Tai, H. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B Chem. 2020, 317, 128204. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Ding, X.; Yu, X.; Zhao, X.; Chen, X. Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sens. Actuators B Chem. 2020, 317, 128168. [Google Scholar] [CrossRef]
- Leonardi, S.G.; Wlodarski, W.; Li, Y.; Donato, N.; Sofer, Z.; Pumera, M.; Neri, G. A highly sensitive room temperature humidity sensor based on 2D-WS2 nanosheets. FlatChem 2018, 9, 21–26. [Google Scholar] [CrossRef]
- Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A Phys. 2008, 144, 280–295. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect. Sensors 2018, 18, 916. [Google Scholar] [CrossRef] [Green Version]
- Alwis, L.S.M.; Sun, T.; Grattan, K.T.V. Fibre Grating-based Sensor Design for Humidity Measurement in Chemically Harsh Environment. Procedia Eng. 2016, 168, 1317–1320. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Xu, P.; Yu, H.; Xu, T.; Zhang, S.; Li, X. Revealing humidity-enhanced NH3 sensing effect by using resonant microcantilever. Sens. Actuators B Chem. 2018, 257, 488–495. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Sackmann, A.; Weimar, U.; Bârsan, N. A highly selective sensor to acetylene and ethylene based on LaFeO3. Sens. Actuators B Chem. 2020, 303, 127204. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Sackmann, A.; Weimar, U.; Bârsan, N. Acetylene- and Ethylene-Sensing Mechanism for LaFeO3 -Based Gas Sensors: Operando Insights. J. Phys. Chem. C 2020, 124, 7317–7326. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef] [Green Version]
- Paska, Y.; Stelzner, T.; Christiansen, S.; Haick, H. Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors. ASC Nano 2021, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yoon, I.; Lee, S.; Kim, H.; Seo, J.W.; Chung, Y.; Unger, A.; Kupnik, M.; Lee, H.J. CMUT-based resonant gas sensor array for VOC detection with low operating voltage. Sens. Actuators B Chem. 2018, 273, 1556–1563. [Google Scholar] [CrossRef]
- Ru, C.; Gu, Y.; Li, Z.; Duan, Y.; Zhuang, Z.; Na, H.; Zhao, C. Effective enhancement on humidity sensing characteristics of sulfonated poly(ether ether ketone) via incorporating a novel bifunctional metal–organic–framework. J. Electroanal. Chem. 2019, 833, 418–426. [Google Scholar] [CrossRef]
- Wu, R.J.; Sun, Y.L.; Lin, C.C.; Chen, H.W.; Chavali, M. Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens. Actuators B Chem. 2006, 115, 198–204. [Google Scholar] [CrossRef]
- Correia, S.F.H.; Antunes, P.; Pecoraro, E.; Lima, P.P.; Varum, H.; Carlos, L.D.; Ferreira, R.A.S.; André, P.S. Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors 2012, 12, 8847–8860. [Google Scholar] [CrossRef] [Green Version]
- Berruti, G.; Consales, M.; Cutolo, A.; Cusano, A.; Breglio, G.; Buontempo, S.; Petagna, P.; Giordano, M. Radiation hard humidity sensors for high energy physics applications using polymide-coated Fiber Bragg Gratings sensors. Sens. Actuators B Chem. 2011, 177, 94–102. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, Y.; Krishnaswamy, S. Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings. Sens. Actuators B Chem. 2013, 176, 264–274. [Google Scholar] [CrossRef]
- Viegas, D.; Hernaez, M.; Goicoechea, J.; Santos, J.; Araújo, F.; Arregui, F.; Matias, I. Simultaneous Measurement of Humidity and Temperature Based on an SiO2-Nanospheres Film Deposited on a Long-Period Grating In-Line With a Fiber Bragg Grating. IEEE Sens. J. 2010, 11, 162–166. [Google Scholar] [CrossRef]
- Fu, M.Y.; Lin, G.R.; Liu, W.F.; Wu, C. Fiber-optic humidity sensor based on an air-gap long period fiber grating. Opt. Rev. 2011, 18, 93–95. [Google Scholar] [CrossRef]
- Pissadakis, S.; Vainos, N.A.; Konstantaki, M. Thin film overlaid long period fibre grating sensors: Examples and prospects for advanced health monitoring applications. In Proceedings of the 2009 9th International Conference on Information Technology and Applications in Biomedicine, Larnaka, Cyprus, 4–7 November 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Xia, L.; Li, L.; Li, W.; Kou, T.; Liu, D. Novel optical fiber humidity sensor based on a no-core fiber structure. Sens. Actuators A Phys. 2013, 190, 1–5. [Google Scholar] [CrossRef]
- Urrutia, A.; Goicoechea, J.; Rivero, P.J.; Matías, I.R.; Arregui, F.J. Electrospun nanofiber mats for evanescent optical fiber sensors. Sens. Actuators B Chem. 2013, 176, 569–576. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Lei, H.; Song, J.; Chen, H.; Li, B. Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing. Opt. Express 2012, 20, 19404–19411. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Dong, X.; Chan, C.C.; Zhao, C.L.; Zu, P. Humidity sensor based on a multimode-fiber taper coated with polyvinyl alcohol interacting with a fiber Bragg grating. IEEE Sens. J. 2011, 12, 2205–2208. [Google Scholar] [CrossRef]
- Liang, H.; Jin, Y.; Wang, J.; Dong, X. Relative humidity sensor based on polarization maintaining fiber loop mirror with polymer coating. Microw. Opt. Technol. Lett. 2012, 54, 2364–2366. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C.; Chen, L.H.; Li, T.; Lee, K.X.; Leong, K.C. Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement. Sens. Actuators B Chem. 2012, 174, 563–569. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Rajan, G.; Wang, P.; Farrell, G. Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating. Opt. Laser Technol. 2011, 43, 1301–1305. [Google Scholar] [CrossRef]
- Zhao, Z.; Duan, Y. A low cost fiber-optic humidity sensor based on silica sol–gel film. Sens. Actuators B Chem. 2011, 160, 1340–1345. [Google Scholar] [CrossRef]
- Fuke, M.V.; Kanitkar, P.; Kulkarni, M.; Kale, B.; Aiyer, R. Effect of particle size variation of Ag nanoparticles in Polyaniline composite on humidity sensing. Talanta 2010, 81, 320–326. [Google Scholar] [CrossRef]
- Akita, S.; Sasaki, H.; Watanabe, K.; Seki, A. A humidity sensor based on a hetero-core optical fiber. Sens. Actuators B Chem. 2010, 147, 385–391. [Google Scholar] [CrossRef]
- Shukla, S.; Tiwari, A.; Parashar, G.; Mishra, A.; Dubey, G. Exploring fiber optic approach to sense humid environment over nano-crystalline zinc oxide film. Talanta 2009, 80, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Fuke, M.; Hawaldar, R.; Kulkarni, M.; Amalnerkar, D.; Aiyer, R. Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B Chem. 2008, 129, 106–112. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, F.; Lou, J.; Yin, X.; Tong, L. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt. Express 2008, 16, 13349–13353. [Google Scholar] [CrossRef]
- Chen, L.H.; Chan, C.C.; Li, T.; Shaillender, M.; Neu, B.; Balamurali, P.; Menon, R.; Zu, P.; Ang, X.M.; Wong, W.C.; et al. Chitosan-coated polarization maintaining fiber-based Sagnac interferometer for relative humidity measurement. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1597–1604. [Google Scholar] [CrossRef]
- Castriotta, L.; Mannsfeld, S.; König, T. Analysis of Gold nanoparticle deposition for Solid State Plasmonic Solar Cells. In Organic Molecular Electronic Master Program; Center for Advancing Electronics Dresden: Dresden, Germany, 2017; p. 2. [Google Scholar] [CrossRef]
- Ten Elshof, J. 4-Chemical solution deposition techniques for epitaxial growth of complex oxides. In Epitaxial Growth of Complex Metal Oxides; Koster, G., Huijben, M., Rijnders, G., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, UK, 2015; pp. 69–93. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; She, C.; Liu, A.; Cheng, J.; Li, H.; Liu, S.; Jing, C.; Cheng, Y.; Chu, J. High performance tube sensor based on PANI/Eu3+ nanofiber for low-volume NH3 detection. Anal. Chim. Acta 2020, 1093, 115–122. [Google Scholar] [CrossRef]
- Seif, A.M.; Ahmadi Tabar, F.; Nikfarjam, A.; Sharif, F.; Hajghassem, H.; Mazinani, S. Hollow polyaniline nanofibers for highly sensitive ammonia detection applications. IEEE Sens. J. 2019, 19, 9616–9623. [Google Scholar] [CrossRef]
- Lee, U.G.; Kim, W.B.; Han, D.H.; Chung, H.S. A modified equation for thickness of the film fabricated by spin coating. Symmetry 2019, 11, 1183. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xie, G.; Su, Y.; Su, L.; Zhang, Q.; Du, H.; Tai, H.; Jiang, Y. Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sens. Actuators B Chem. 2018, 255, 2203–2210. [Google Scholar] [CrossRef]
- Yang, P.; Lv, D.; Shen, W.; Wu, T.; Yang, Y.; Zhao, Y.; Tan, R.; Song, W. Porous flexible polyaniline/polyvinylidene fluoride composite film for trace-level NH3 detection at room temperature. Mater. Lett. 2020, 271, 127798. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, D.; Wang, D.; Li, Z.; Liu, S. Quartz Crystal Microbalance Sensor for Humidity Sensing Based on Layer-by-Layer Self-Assembled PDDAC/Graphene Oxide Film. IEEE Sens. J. 2018, 18, 9471–9476. [Google Scholar] [CrossRef]
Target Analyte | Monitoring Significance for Agricultural Greenhouse Environments | Target Range | Refs. |
---|---|---|---|
Ethylene | •Ripening hormone which effects the growth and development of plants | 0.001–10 ppm | [3,18,19] |
•Influences the crop adaptability and performance under stress conditions | |||
•Prolongs the storage life of commercial produce | |||
Carbon Dioxide | •Essential component of photosynthesis | 200–1300 ppm | [6,9] |
•Increases plant productivity by improving growth and vigor | |||
Hydrogen Sulfide | •Preservative that can delay ripening and senescence of crops during storage | 1–80 ppm | [14] |
•Maintains colour and conserves intercellular energy | |||
Ethanol | •Preservative that can delay ripening and senescence of crops during storage | 500–2500 ppm | [4,15,16] |
Water Vapor | •Influences leaf conductance and CO assimilation | 40–100% | [5,9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Love, C.; Nazemi, H.; El-Masri, E.; Ambrose, K.; Freund, M.S.; Emadi, A. A Review on Advanced Sensing Materials for Agricultural Gas Sensors. Sensors 2021, 21, 3423. https://doi.org/10.3390/s21103423
Love C, Nazemi H, El-Masri E, Ambrose K, Freund MS, Emadi A. A Review on Advanced Sensing Materials for Agricultural Gas Sensors. Sensors. 2021; 21(10):3423. https://doi.org/10.3390/s21103423
Chicago/Turabian StyleLove, Calvin, Haleh Nazemi, Eman El-Masri, Kenson Ambrose, Michael S. Freund, and Arezoo Emadi. 2021. "A Review on Advanced Sensing Materials for Agricultural Gas Sensors" Sensors 21, no. 10: 3423. https://doi.org/10.3390/s21103423
APA StyleLove, C., Nazemi, H., El-Masri, E., Ambrose, K., Freund, M. S., & Emadi, A. (2021). A Review on Advanced Sensing Materials for Agricultural Gas Sensors. Sensors, 21(10), 3423. https://doi.org/10.3390/s21103423