Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Interaction Platforms
3.1.1. Standard Workstation
3.1.2. Joystick
3.1.3. Simulation Environment
3.1.4. System Operation
3.2. Visual Feedback Strategies for Teleoperation
3.2.1. Feedback on the Screen (FS)
3.2.2. Feedback on the Joystick (FJ)
3.3. Experimental Protocol
3.3.1. Participant Recruitment
- Inclusion Criteria: Occupational therapists (OT) or last year students in occupational therapy (OT Student) with experience in gait rehabilitation scenarios.
- Exclusion Criteria: Candidates who presented upper-limb injuries, cognitive impairments, or any condition that impedes using of the joystick and the graphic interface were excluded in this study.
3.3.2. Experimental Procedure
3.3.3. Quantitative Assessment
3.3.4. Qualitative Assessment
3.3.5. Statistical Analysis
3.3.6. Ethics Statement
4. Results and Discussion
4.1. Quantitative Results
4.2. Qualitative Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- National Health Service UK. Physiotherapy; National Health Service UK: England, UK, 2018. [Google Scholar]
- Carrera, I.; Moreno, H.A.; Sierra M., S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4; pp. 43–66. [Google Scholar] [CrossRef]
- Carr, J.H.; Shepherd, R.B. Stroke Rehabilitation-Guidelines for Exercise and Training to Optimize Motor Skill, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2003. [Google Scholar]
- States, R.A.; Pappas, E.; Salem, Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra M., S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [Google Scholar] [CrossRef]
- Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Belda-Lois, J.M.; Horno, S.M.d.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.; Frizera-Neto, A.; Santos, C.P.; Ceres, R. Review and Classification of Human Gait Training and Rehabilitation Devices; Assistive Technology Research Series; IOS Press Ebook: Amsterdam, The Netherlands, 2011; Chapter Everyday T; pp. 774–781. [Google Scholar] [CrossRef]
- Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Robot. Auton. Syst. 2012, 60, 548–562. [Google Scholar] [CrossRef] [Green Version]
- Sierra, S.; Arciniegas, L.; Ballen-Moreno, F.; Gomez-Vargas, D.; Munera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [Google Scholar] [CrossRef]
- Constantinescu, R.; Leonard, C.; Deeley, C.; Kurlan, R. Assistive devices for gait in Parkinson’s disease. Park. Relat. Disord. 2007, 13, 133–138. [Google Scholar] [CrossRef]
- Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [Google Scholar] [CrossRef]
- Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [Google Scholar] [CrossRef]
- Belas Dos Santos, M.; Barros de Oliveira, C.; Dos Santos, A.; Garabello Pires, C.; Dylewski, V.; Arida, R.M. A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. Behav. Neurol. 2018, 2018, 2892065. [Google Scholar] [CrossRef]
- Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-assisted training for walking after stroke. In Cochrane Database of Systematic Reviews; Mehrholz, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar] [CrossRef]
- Dundar, U.; Toktas, H.; Solak, O.; Ulasli, A.M.; Eroglu, S. A Comparative Study of Conventional Physiotherapy Versus Robotic Training Combined with Physiotherapy in Patients with Stroke. Top. Stroke Rehabil. 2014, 21, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkstra, A. Care Dependency. In Dementia in Nursing Homes; Springer: Cham, Switzerland, 2017; pp. 229–248. [Google Scholar] [CrossRef]
- Sathian, K.; Buxbaum, L.J.; Cohen, L.G.; Krakauer, J.W.; Lang, C.E.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilit. Neural Repair 2011, 25, 21S–32S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosa, M.; Morone, G.; Cherubini, A.; Paolucci, S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J. Med. Biol. Eng. 2016, 36, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [Google Scholar] [CrossRef]
- Sierra M., S.D.; Jimenez, M.F.; Munera, M.C.; Bastos, T.; Frizera-Neto, A.; Cifuentes, C.A. A Therapist Helping Hand for Walker-Assisted Gait Rehabilitation: A Pre-Clinical Assessment. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Opiyo, S.; Zhou, J.; Mwangi, E.; Kai, W.; Sunusi, I. A Review on Teleoperation of Mobile Ground Robots: Architecture and Situation Awareness. Int. J. Control. Autom. Syst. 2020, 19, 1384–1407. [Google Scholar] [CrossRef]
- Rognon, C.; Mintchev, S.; Dell’Agnola, F.; Cherpillod, A.; Atienza, D.; Floreano, D. Flyjacket: An upper body soft exoskeleton for immersive drone control. IEEE Robot. Autom. Lett. 2018, 3, 2362–2369. [Google Scholar] [CrossRef]
- Hou, X. Haptic teleoperation of a multirotor aerial robot using path planning with human intention estimation. Intell. Serv. Robot. 2020, 14, 33–46. [Google Scholar] [CrossRef]
- Jablonowski, M. Beyond drone vision: The embodied telepresence of first-person-view drone flight. Senses Soc. 2020, 15, 344–358. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Singh, H.; Naugriya, S.G.; Gill, S.S.; Buyya, R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener. Comput. Syst. 2021, 115, 1–19. [Google Scholar] [CrossRef]
- Butner, S.E.; Ghodoussi, M. Transforming a surgical robot for human telesurgery. IEEE Trans. Robot. Autom. 2003, 19, 818–824. [Google Scholar] [CrossRef]
- Ghodoussi, M.; Butner, S.E.; Wang, Y. Robotic surgery-the transatlantic case. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1882–1888. [Google Scholar]
- Diolaiti, N.; Melchiorri, C. Teleoperation of a mobile robot through haptic feedback. In Proceedings of the IEEE International Workshop HAVE Haptic Virtual Environments and Their, Ottawa, ON, Canada, 17–18 November 2002; pp. 67–72. [Google Scholar]
- Solanes, J.E.; Muñoz, A.; Gracia, L.; Martí, A.; Girbés-Juan, V.; Tornero, J. Teleoperation of industrial robot manipulators based on augmented reality. Int. J. Adv. Manuf. Technol. 2020, 111, 1077–1097. [Google Scholar] [CrossRef]
- Lv, H.; Yang, G.; Zhou, H.; Huang, X.; Yang, H.; Pang, Z. Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments. IEEE J. Transl. Eng. Health Med. 2020, 8, 2168–2372. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Cho, K.; Jang, I.; Ju, C.; Son, H.I.; Yang, G.H. Development of a shared controller for obstacle avoidance in a teleoperation system. Int. J. Control. Autom. Syst. 2020, 18, 2974–2982. [Google Scholar] [CrossRef]
- Vo, C.P.; To, X.D.; Ahn, K.K. A Novel Force Sensorless Reflecting Control for Bilateral Haptic Teleoperation System. IEEE Access 2020, 8, 96515–96527. [Google Scholar] [CrossRef]
- Eck, U.; Pankratz, F.; Sandor, C.; Klinker, G.; Laga, H. Precise haptic device co-location for visuo-haptic augmented reality. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1427–1441. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.M.L.R.; Simões, W.C.S.S.; Naves, E.L.M.; Bastos Filho, T.F.; De Lucena, V.F. Teleoperation training environment for new users of electric powered wheelchairs based on multiple driving methods. IEEE Access 2018, 6, 55099–55111. [Google Scholar] [CrossRef]
- Ogata, Y.; Katsumura, M.; Yano, K.; Nakao, T.; Hamada, A.; Torii, K. Joystick Grip for Electric Wheelchair for Tension-Athetosis-Type Cerebral Palsy. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1666–1669. [Google Scholar]
- Narayanan, V.K.; Spalanzani, A.; Babel, M. A semi-autonomous framework for human-aware and user intention driven wheelchair mobility assistance. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4700–4707. [Google Scholar]
- Wada, M.; Kameda, F. A joystick car drive system with seating in a wheelchair. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2163–2168. [Google Scholar]
- Silva, Y.; Simöes, W.; Teófilo, M.; Naves, E.; Lucena, V. Training environment for electric powered wheelchairs using teleoperation through a head mounted display. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–2. [Google Scholar]
- Ikeda, H.; Toyama, T.; Maki, D.; Sato, K.; Nakano, E. Cooperative step-climbing strategy using an autonomous wheelchair and a robot. Robot. Auton. Syst. 2021, 135, 103670. [Google Scholar] [CrossRef]
- Schettino, V.; Demiris, Y. Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4600–4606. [Google Scholar]
- Shen, J.; Xu, B.; Pei, M.; Jia, Y. A low-cost tele-presence wheelchair system. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2452–2457. [Google Scholar]
- Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and health care robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1685–1728. [Google Scholar]
- Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress and prospects of the human–robot collaboration. Auton. Robot. 2018, 42, 957–975. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human–robot interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Roveda, L.; Maskani, J.; Franceschi, P.; Abdi, A.; Braghin, F.; Tosatti, L.M.; Pedrocchi, N. Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 2020, 100, 417–433. [Google Scholar] [CrossRef]
- Islam, S.; Liu, P.X.; El Saddik, A.; Ashour, R.; Dias, J.; Seneviratne, L.D. Artificial and virtual impedance interaction force reflection-based bilateral shared control for miniature unmanned aerial vehicle. IEEE Trans. Ind. Electron. 2018, 66, 329–337. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Zhang, D.; Xie, J.; Liu, M. A six-dimensional traction force sensor used for human-robot collaboration. Mechatronics 2019, 57, 164–172. [Google Scholar] [CrossRef]
- Deng, X.; Yu, Z.L.; Lin, C.; Gu, Z.; Li, Y. A bayesian shared control approach for wheelchair robot with brain machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, S.; Duan, J.; Su, C.Y.; Yang, C.; Zhao, X. Human cooperative wheelchair with brain–machine interaction based on shared control strategy. IEEE/ASME Trans. Mechatron. 2016, 22, 185–195. [Google Scholar] [CrossRef]
- Luo, J.; Lin, Z.; Li, Y.; Yang, C. A teleoperation framework for mobile robots based on shared control. IEEE Robot. Autom. Lett. 2019, 5, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.; Macii, D.; Moro, F.; et al. Navigation assistance and guidance of older adults across complex public spaces: The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [Google Scholar] [CrossRef]
- Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83. [Google Scholar] [CrossRef]
- Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.; Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-assisted navigation for a robotic walker with aided user intent. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 348–355. [Google Scholar]
- Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance controller with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [Google Scholar] [CrossRef]
- Ferrari, F.; Divan, S.; Guerrero, C.; Zenatti, F.; Guidolin, R.; Palopoli, L.; Fontanelli, D. Human–robot interaction analysis for a smart walker for elderly: The ACANTO interactive guidance system. Int. J. Soc. Robot. 2020, 12, 479–492. [Google Scholar] [CrossRef]
- Jiménez, M.F.; Mello, R.C.; Bastos, T.; Frizera, A. Assistive Locomotion Device with Haptic Feedback For Guiding Visually Impaired People. Med. Eng. Phys. 2020. [Google Scholar] [CrossRef]
- Andaluz, V.H.; Roberti, F.; Toibero, J.M.; Carelli, R.; Wagner, B. Adaptive dynamic path following control of an unicycle-like mobile robot. In Proceedings of the International Conference on Intelligent Robotics and Applications, Aachen, Germany, 6–8 December 2011; pp. 563–574. [Google Scholar]
- Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Blair, R.C.; Higgins, J.J. A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions. J. Educ. Stat. 1980, 5, 309–335. [Google Scholar] [CrossRef]
- de Winter, J.; Dodou, D. Five-Point Likert Items: T test versus Mann-Whitney-Wilcoxon (Addendum added October 2012). Pract. Assess. Res. Eval. 2010, 15, 11. [Google Scholar]
- Zagermann, J.; Pfeil, U.; Reiterer, H. Measuring cognitive load using eye tracking technology in visual computing. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, Baltimore, MD, USA, 24 October 2016; pp. 78–85. [Google Scholar]
- Oviatt, S. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM international conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 871–880. [Google Scholar]
- Hollender, N.; Hofmann, C.; Deneke, M.; Schmitz, B. Integrating cognitive load theory and concepts of human–computer interaction. Comput. Hum. Behav. 2010, 26, 1278–1288. [Google Scholar] [CrossRef]
- Emami, Z.; Chau, T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behav. Brain Res. 2020, 378, 112240. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.Y.H.; MacDonald, B.; Wunsche, B. Mixed reality simulation for mobile robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 232–237. [Google Scholar]
- Miglino, O.; Lund, H.H.; Nolfi, S. Evolving mobile robots in simulated and real environments. Artif. Life 1995, 2, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.U.; Wang, R.F.; Hutchinson, S.A.; Hur, P. Customizing haptic and visual feedback for assistive human–robot interface and the effects on performance improvement. Robot. Auton. Syst. 2017, 91, 258–269. [Google Scholar] [CrossRef]
- Mo, Y.; Song, A.; Qin, H. Analysis and Performance Evaluation of a 3-DOF Wearable Fingertip Device for Haptic Applications. IEEE Access 2019, 7, 170430–170441. [Google Scholar] [CrossRef]
- Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility: The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Agrawal, A.; Sreenath, K.; Michael, N. Online adaptive teleoperation via motion primitives for mobile robots. Auton. Robot. 2019, 43, 1357–1373. [Google Scholar] [CrossRef]
Subject | Age (Years) | Gender | Occupation | Experience (Years) |
---|---|---|---|---|
1 | 21 | Female | OT Student | 1 |
2 | 23 | Female | OT Student | 1 |
3 | 23 | Female | OT Student | 2 |
4 | 21 | Female | OT | 2 |
5 | 23 | Female | OT | 3 |
6 | 22 | Male | OT Student | 1 |
7 | 21 | Female | OT | 3 |
8 | 27 | Female | OT | 5 |
9 | 23 | Female | OT | 3 |
10 | 24 | Female | OT | 4 |
11 | 24 | Male | OT | 2 |
12 | 25 | Female | OT | 2 |
13 | 25 | Female | OT | 3 |
14 | 25 | Female | OT | 1 |
Cat. | No. | Question |
---|---|---|
FC | 1 | I had the necessary knowledge to use the device. |
2 | I have previously used similar systems. | |
3 | The training was enough to understand the behavior of the mode. | |
4 | Before using the device, I was intimidated. * | |
PAE | 1 | If I had to use a joystick as a command interface, this device would be useful to me. |
2 | If I had to use a joystick as a command interface, I would like to use this device. | |
3 | Using this device improves my ability to use command interfaces. | |
4 | Similar devices may allow a new form of therapist-patient interaction. | |
EEA | 1 | In this mode, learning to operate the device was easy. |
2 | In this mode, I think I quickly learned to control the device. | |
3 | In this mode, I was afraid of making mistakes or breaking something. * | |
4 | If I had to control a robotic walker with this device in this mode, I would be afraid of losing control. * | |
5 | In this mode, working with the device was so complicated, which is hard to understand. * | |
BP | 1 | In this mode, I felt the device understood me. |
2 | In this mode, I felt the device communicate with me. | |
3 | In this mode, I felt like I was controlling the virtual walker with the device. | |
4 | In this mode, I felt that the device helped me control the virtual walker. | |
5 | In this way, I believe the type of feedback was appropriate and effective. | |
6 | In this mode, I think the kind of feedback was easy to understand. | |
TR | 1 | In general, I would trust when the device gives me advice on how to control the virtual walker. |
2 | In general, if the device give me advice, I would follow it. | |
AT | 1 | In this mode, I had fun using the device. |
2 | In this mode, I think it is interesting how the device interacts with me. | |
3 | In this mode, using the device was frustrating for me. * |
Parameter | FS | FJ | p-Value |
---|---|---|---|
Duration [s] | 26.15 ± 2.58 * | 25.23 ± 3.91 * | <0.01 |
Distance [l | 3.81 ± 2.20 * | 3.80 ± 1.92 * | 0.04 |
KTE [m] | 0.31 ± 0.06 * | 0.28 ± 0.03 * | 0.02 |
Orientation Error [rad] | 0.35 ± 0.11 * | 0.32 ± 0.06 * | 0.03 |
Correction Torque [N.m] | 1.37 ± 3.28 * | 1.26 ± 3.75 * | <0.01 |
Category | Feedback on the Screen vs. Feedback on the Joystick |
---|---|
FC | 0.01 |
PAE | 0.50 |
EEA | 0.03 |
BP | 0.04 |
TR | 0.01 |
AT | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia A., D.E.; Sierra M., S.D.; Gomez-Vargas, D.; Jiménez, M.F.; Múnera, M.; Cifuentes, C.A. Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists. Sensors 2021, 21, 3521. https://doi.org/10.3390/s21103521
Garcia A. DE, Sierra M. SD, Gomez-Vargas D, Jiménez MF, Múnera M, Cifuentes CA. Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists. Sensors. 2021; 21(10):3521. https://doi.org/10.3390/s21103521
Chicago/Turabian StyleGarcia A., Daniel E., Sergio D. Sierra M., Daniel Gomez-Vargas, Mario F. Jiménez, Marcela Múnera, and Carlos A. Cifuentes. 2021. "Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists" Sensors 21, no. 10: 3521. https://doi.org/10.3390/s21103521
APA StyleGarcia A., D. E., Sierra M., S. D., Gomez-Vargas, D., Jiménez, M. F., Múnera, M., & Cifuentes, C. A. (2021). Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists. Sensors, 21(10), 3521. https://doi.org/10.3390/s21103521