A Crosstalk- and Interferent-Free Dual Electrode Amperometric Biosensor for the Simultaneous Determination of Choline and Phosphocholine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Methods
2.3.1. Electrode Modification
2.3.2. Biosensor Preparation
2.3.3. Electrochemical Measurements
3. Results and Discussion
3.1. Enzyme Immobilization and Choice of ALP Source
3.2. Influence of Buffer Composition and Its pH
3.3. Analytical Performances of the Dual Electrode Biosensor
3.4. Simultaneous Determination of Ch and PCh at the Dual Electrode Biosensor
3.5. Interference-Free Performances of the Dual Electrode Biosensor
3.6. Stability of the Dual Electrode Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeisel, S.H. Choline deficiency. J. Nutr. Biochem. 1990, 1, 332–349. [Google Scholar] [CrossRef]
- Kiss, Z. Regulation of Mitogenesis by Water-Soluble Phospholipid Intermediates1Abbreviations: PCho—phosphocholine; PEtn—phosphoethanolamine; PtdChoߞphosphatidylcholine; PtdEtn—phosphatidylethanolamine; CK—choline kinase; EK—ethanolamine kinase; PLD—phospholipase D. Cell. Signal. 1999, 11, 149–157. [Google Scholar] [CrossRef]
- Katz-Brull, R.; Margalit, R.; Bendel, P.; Degani, H. Choline metabolism in breast cancer; H-, C- and P-NMR studies of cells and tumors. Magn. Reson. Mater. Biol. Phys. Med. 1998, 6, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Negendank, W. Studies of human tumors by MRS: A review. NMR Biomed. 1992, 5, 303–324. [Google Scholar] [CrossRef]
- Sharma, U.; Mehta, A.; Seenu, V.; Jagannathan, N.R. Biochemical characterization of metastatic lymph nodes of breast cancer patients by in vitro 1H magnetic resonance spectroscopy: A pilot study. Magn. Reson. Imaging 2004, 22, 697–706. [Google Scholar] [CrossRef]
- Sitter, B.; Lundgren, S.; Bathen, T.F.; Halgunset, J.; Fjosne, H.E.; Gribbestad, I.S. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006, 19, 30–40. [Google Scholar] [CrossRef]
- Klomp, D.W.J.; van de Bank, B.L.; Raaijmakers, A.; Korteweg, M.A.; Possanzini, C.; Boer, V.O.; van de Berg, C.A.T.; van de Bosch, M.A.A.J.; Luijten, P.R. 31 P MRSI and 1 H MRS at 7 T: Initial results in human breast cancer. NMR Biomed. 2011, 24, 1337–1342. [Google Scholar] [CrossRef]
- Arias-Mendoza, F.; Smith, M.R.; Brown, T.R. Predicting treatment response in non-Hodgkin’s lymphoma from the pretreatment tumor content of phosphoethanolamine plus phosphocholine1. Acad. Radiol. 2004, 11, 368–376. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Chen, K.; Chiu, C.-Y.; Lu, K.-Y.; Lu, H.-Y.; Chiang, M.-H.; Tsai, C.-K.; Lo, C.-J.; Cheng, M.-L.; Chang, T.-C.; et al. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. Metabolomics 2019, 15, 146. [Google Scholar] [CrossRef]
- Sun, G.; Wang, J.; Zhang, J.; Ma, C.; Shao, C.; Hao, J.; Zheng, J.; Feng, X.; Zuo, C. High-resolution magic angle spinning 1H magnetic resonance spectroscopy detects choline as a biomarker in a swine obstructive chronic pancreatitis model at an early stage. Mol. Biosyst. 2014, 10, 467–474. [Google Scholar] [CrossRef]
- Vonica, C.L.; Ilie, I.R.; Socaciu, C.; Moraru, C.; Georgescu, B.; Farcaş, A.; Roman, G.; Mureşan, A.A.; Georgescu, C.E. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography-quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scand. J. Clin. Lab. Investig. 2019, 79, 437–442. [Google Scholar] [CrossRef]
- Walter, A.; Korth, U.; Hilgert, M.; Hartmann, J.; Weichel, O.; Hilgert, M.; Fassbender, K.; Schmitt, A.; Klein, J. Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol. Aging 2004, 25, 1299–1303. [Google Scholar] [CrossRef]
- Senaratne, R.; Milne, A.M.; MacQueen, G.M.; Hall, G.B.C. Increased choline-containing compounds in the orbitofrontal cortex and hippocampus in euthymic patients with bipolar disorder: A proton magnetic resonance spectroscopy study. Psychiatry Res. Neuroimaging 2009, 172, 205–209. [Google Scholar] [CrossRef]
- Pomfret, E.A.; DaCosta, K.-A.; Schurman, L.L.; Zeisel, S.H. Measurement of choline and choline metabolite concentrations using high-pressure liquid chromatography and gas chromatography-mass spectrometry. Anal. Biochem. 1989, 180, 85–90. [Google Scholar] [CrossRef]
- Koc, H.; Mar, M.-H.; Ranasinghe, A.; Swenberg, J.A.; Zeisel, S.H. Quantitation of Choline and Its Metabolites in Tissues and Foods by Liquid Chromatography/Electrospray Ionization-Isotope Dilution Mass Spectrometry. Anal. Chem. 2002, 74, 4734–4740. [Google Scholar] [CrossRef]
- Nygren, H.; Börner, K.; Hagenhoff, B.; Malmberg, P.; Månsson, J.-E. Localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex with imaging TOF-SIMS equipped with a bismuth cluster ion source. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1737, 102–110. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Xiong, Y.; Curtis, J.M. Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: The determination of choline containing compounds in foods. J. Chromatogr. A 2011, 1218, 5470–5479. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, Y.-Y.; Goruk, S.; Oilund, K.; Field, C.J.; Jacobs, R.L.; Curtis, J.M. Validation of an LC-MS/MS method for the quantification of choline-related compounds and phospholipids in foods and tissues. J. Chromatogr. B 2012, 911, 170–179. [Google Scholar] [CrossRef]
- Mimmi, M.C.; Picotti, P.; Corazza, A.; Betto, E.; Pucillo, C.E.; Cesaratto, L.; Cedolini, C.; Londero, V.; Zuiani, C.; Bazzocchi, M.; et al. High-performance metabolic marker assessment in breast cancer tissue by mass spectrometry. Clin. Chem. Lab. Med. 2011, 49, 317–324. [Google Scholar] [CrossRef]
- Mimmi, M.C.; Finato, N.; Pizzolato, G.; Beltrami, C.A.; Fogolari, F.; Corazza, A.; Esposito, G. Absolute quantification of choline-related biomarkers in breast cancer biopsies by liquid chromatography electrospray ionization mass spectrometry. Anal. Cell. Pathol. 2013, 36, 71–83. [Google Scholar] [CrossRef]
- Santos-Fandila, A.; Vázquez, E.; Barranco, A.; Zafra-Gómez, A.; Navalón, A.; Rueda, R.; Ramírez, M. Analysis of 17 neurotransmitters, metabolites and precursors in zebrafish through the life cycle using ultrahigh performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1001, 191–201. [Google Scholar] [CrossRef]
- Loening, N.M.; Chamberlin, A.M.; Zepeda, A.G.; Gonzalez, R.G.; Cheng, L.L. Quantification of phosphocholine and glycerophosphocholine with31P edited1H NMR spectroscopy. NMR Biomed. 2005, 18, 413–420. [Google Scholar] [CrossRef]
- Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Humpfer, E.; Spraul, M.; Carreira, I.M.; Melo, J.B.; Bernardo, J.; Gomes, A.; et al. Metabolic profiling of human lung cancer tissue by1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J. Proteome Res. 2010, 9, 319–332. [Google Scholar] [CrossRef]
- Luttje, M.P.; Italiaander, M.G.M.; Arteaga de Castro, C.S.; van der Kemp, W.J.M.; Luijten, P.R.; van Vulpen, M.; van der Heide, U.A.; Klomp, D.W.J. 31 P MR spectroscopic imaging combined with 1 H MR spectroscopic imaging in the human prostate using a double tuned endorectal coil at 7T. Magn. Reson. Med. 2014, 72, 1516–1521. [Google Scholar] [CrossRef]
- Pearce, J.M.; Mahoney, M.C.; Lee, J.-H.; Chu, W.-J.; Cecil, K.M.; Strakowski, S.M.; Komoroski, R.A. 1H NMR analysis of choline metabolites in fine-needle-aspirate biopsies of breast cancer. Magn. Reson. Mater. Phys. Biol. Med. 2013, 26, 337–343. [Google Scholar] [CrossRef]
- Esmaeili, M.; Moestue, S.A.; Hamans, B.C.; Veltien, A.; Kristian, A.; Engebråten, O.; Maelandsmo, G.M.; Gribbestad, I.S.; Bathen, T.F.; Heerschap, A. In Vivo 31 P magnetic resonance spectroscopic imaging (MRSI) for metabolic profiling of human breast cancer xenografts. J. Magn. Reson. Imaging 2015, 41, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Jiang, L.; Jiang, B.; Liu, M.; Mao, X. 1H–14N HSQC detection of choline-containing compounds in solutions. J. Magn. Reson. 2010, 206, 157–160. [Google Scholar] [CrossRef]
- Mao, J.; Jiang, L.; Jiang, B.; Liu, M.; Mao, X. A Selective NMR Method for Detecting Choline Containing Compounds in Liver Tissue: The 1 H–14 N HSQC Experiment. J. Am. Chem. Soc. 2010, 132, 17349–17351. [Google Scholar] [CrossRef] [PubMed]
- Belkić, D.; Belkić, K. In Vivo magnetic resonance spectroscopy for ovarian cancer diagnostics: Quantification by the fast Padé transform. J. Math. Chem. 2017, 55, 349–405. [Google Scholar] [CrossRef] [Green Version]
- Belkić, D.; Belkić, K. Mathematical optimization of In Vivo NMR chemistry through the fast Padé transform: Potential relevance for early breast cancer detection by magnetic resonance spectroscopy. J. Math. Chem. 2006, 40, 85–103. [Google Scholar] [CrossRef]
- Belkić, D.; Belkić, K. The potential for practical improvements in cancer diagnostics by mathematically-optimized magnetic resonance spectroscopy. J. Math. Chem. 2011, 49, 2408–2440. [Google Scholar] [CrossRef]
- Özdemir, M.S.; De Deene, Y.; Fieremans, E.; Lemahieu, I. Quantitative proton magnetic resonance spectroscopy without water suppression. J. Instrum. 2009, 4, P06014. [Google Scholar] [CrossRef]
- Morniroli, D.; Dessì, A.; Giannì, M.L.; Roggero, P.; Noto, A.; Atzori, L.; Lussu, M.; Fanos, V.; Mosca, F. Is the body composition development in premature infants associated with a distinctive nuclear magnetic resonance metabolomic profiling of urine? J. Matern. Neonatal Med. 2019, 32, 2310–2318. [Google Scholar] [CrossRef]
- Masoom, M.; Roberti, R.; Binaglia, L. Determination of phosphatidylcholine in a flow injection system using immobilized enzyme reactors. Anal. Biochem. 1990, 187, 240–245. [Google Scholar] [CrossRef]
- Klein, J.; Gonzalez, R.; Köppen, A.; Löffelholz, K. Free choline and choline metabolites in rat brain and body fluids: Sensitive determination and implications for choline supply to the brain. Neurochem. Int. 1993, 22, 293–300. [Google Scholar] [CrossRef]
- Murai, S.; Saito, H.; Shirato, R.; Kawaguchi, T. An improved method for assaying phosphocholine and glycerophosphocholine in mouse tissue. J. Pharmacol. Toxicol. Methods 2001, 46, 103–109. [Google Scholar] [CrossRef]
- Guerrieri, A.; De Benedetto, G.E.; Palmisano, F.; Zambonin, P.G. Amperometric sensor for choline and acetylcholine based on a platinum electrode modified by a co-crosslinked bienzymic system. Analyst 1995, 120, 2731–2736. [Google Scholar] [CrossRef]
- Guerrieri, A.; Palmisano, F. An Acetylcholinesterase/Choline Oxidase-Based Amperometric Biosensor as a Liquid Chromatography Detector for Acetylcholine and Choline Determination in Brain Tissue Homogenates. Anal. Chem. 2001, 73, 2875–2882. [Google Scholar] [CrossRef]
- Guerrieri, A.; Lattanzio, V.; Palmisano, F.; Zambonin, P.G. Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor. Biosens. Bioelectron. 2006, 21, 1710–1718. [Google Scholar] [CrossRef]
- Guerrieri, A.; Monaci, L.; Quinto, M.; Palmisano, F.; Aldridge, W.N.; van der Hoff, G.R.; Zoonen, P.; van Tran-Minh, C.; Dumschat, C.; Muller, H.; et al. A disposable amperometric biosensor for rapid screening of anticholinesterase activity in soil extracts. Analyst 2002, 127, 5–7. [Google Scholar] [CrossRef]
- Ciriello, R.; Lo Magro, S.; Guerrieri, A. Assay of serum cholinesterase activity by an amperometric biosensor based on a co-crosslinked choline oxidase/overoxidized polypyrrole bilayer. Analyst 2018, 143, 920–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrieri, A.; Ciriello, R.; Crispo, F.; Bianco, G. Detection of choline in biological fluids from patients on haemodialysis by an amperometric biosensor based on a novel anti-interference bilayer. Bioelectrochemistry 2019, 129, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Guerrieri, A.; Malitesta, C.; Palmisano, F.; Zambonin, P.G. Interference-free glucose sensor based on glucose-oxidase immobilized in an overoxidized non-conducting polypyrrole film. Fresenius. J. Anal. Chem. 1992, 342, 729–733. [Google Scholar] [CrossRef]
- Centonze, D.; Guerrieri, A.; Malitesta, C.; Palmisano, F.; Zambonin, P.G. An in-situ electro-synthesized poly-o-phenylenediamine/glucose oxidase amperometric biosensor for flow injection determination of glucose in serum. Ann. Chim. 1992, 82, 219–234. [Google Scholar]
- Palmisano, F.; Centonze, D.; Guerrieri, A.; Zambonin, P.G. An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling. Biosens. Bioelectron. 1993, 8, 393–399. [Google Scholar] [CrossRef]
- Centonze, D.; Guerrieri, A.; Palmisano, F.; Torsi, L.; Zambonin, P.G. Electrochemically prepared glucose biosensors: Kinetic and faradaic processes involving ascorbic acid and role of the electropolymerized film in preventing electrode-fouling. Fresenius. J. Anal. Chem. 1994, 349, 497–501. [Google Scholar] [CrossRef]
- Palmisano, F.; Guerrieri, A.; Quinto, M.; Zambonin, P.G. Electrosynthesized Bilayer Polymeric Membrane for Effective Elimination of Electroactive Interferents in Amperometric Biosensors. Anal. Chem. 1995, 67, 1005–1009. [Google Scholar] [CrossRef]
- Guerrieri, A.; De Benedetto, G.E.; Palmisano, F.; Zambonin, P.G. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: A glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer. Biosens. Bioelectron. 1998, 13, 103–112. [Google Scholar] [CrossRef]
- Ciriello, R.; Cataldi, T.R.I.; Centonze, D.; Guerrieri, A. Permselective behavior of an electrosynthesized, nonconducting thin film of poly(2-naphthol) and its application to enzyme immobilization. Electroanalysis 2000, 12, 825–830. [Google Scholar] [CrossRef]
- Guerrieri, A.; Ciriello, R.; Centonze, D. Permselective and enzyme-entrapping behaviours of an electropolymerized, non-conducting, poly(o-aminophenol) thin film-modified electrode: A critical study. Biosens. Bioelectron. 2009, 24, 1550–1556. [Google Scholar] [CrossRef]
- Guerrieri, A.; Ciriello, R.; Cataldi, T.R.I. A novel amperometric biosensor based on a co-crosslinked l-lysine-α-oxidase/overoxidized polypyrrole bilayer for the highly selective determination of l-lysine. Anal. Chim. Acta 2013, 795, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, R.; Cataldi, T.R.I.; Crispo, F.; Guerrieri, A. Quantification of l-lysine in cheese by a novel amperometric biosensor. Food Chem. 2015, 169, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, R.; De Gennaro, F.; Frascaro, S.; Guerrieri, A. A novel approach for the selective analysis of L-lysine in untreated human serum by a co-crosslinked L-lysine-α-oxidase/overoxidized polypyrrole bilayer based amperometric biosensor. Bioelectrochemistry 2018, 124, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, R.; Guerrieri, A. Assay of Phospholipase D Activity by an Amperometric Choline Oxidase Biosensor. Sensors 2020, 20, 1304. [Google Scholar] [CrossRef] [Green Version]
- Fortier, G.; Brassard, E.; Bélanger, D. Optimization of a polypyrrole glucose oxidase biosensor. Biosens. Bioelectron. 1990, 5, 473–490. [Google Scholar] [CrossRef]
- Kennedy, J.F.; White, C.A. Principles of immobilization of enzymes. In Handbook of Enzyme Biotechnology; Wiseman, A., Ed.; Ellis Horwood Lim.: Binghamton, NY, USA; John Wiley & Sons: Hoboken, NJ, USA, 1985; pp. 147–207. [Google Scholar]
- Fernley, H.N. Mammalian alkaline phosphatase. In The Enzymes; Boyer, P.D., Ed.; Academic Press: New York, NY, USA; London, UK, 1971; pp. 417–477. [Google Scholar]
- Latner, A.L.; Parsons, M.; Skillen, A.W. Isoelectric focusing of alkaline phosphatases from human kidney and calf intestine. Enzymologia 1971, 40, 1–7. [Google Scholar]
- Armstrong, A.R. Purification of the active phosphatase found in dog faeces. Biochem. J. 1935, 29, 2020–2022. [Google Scholar] [CrossRef] [Green Version]
- Guerrieri, A.; Ciriello, R.; Bianco, G.; De Gennaro, F.; Frascaro, S. Allosteric Enzyme-Based Biosensors-Kinetic Behaviours of Immobilised L-Lysine-α-Oxidase from Trichoderma viride: pH Influence and Allosteric Properties. Biosensors 2020, 10, 145. [Google Scholar] [CrossRef]
- Carbone, M.E.; Ciriello, R.; Guerrieri, A.; Salvi, A.M. XPS investigation on the chemical structure of a very thin, insulating, film synthesized on platinum by electropolymerization of o-aminophenol (oAP) in aqueous solution at neutral pH. Surf. Interface Anal. 2014, 46, 1081–1085. [Google Scholar] [CrossRef]
Analyte | Biosensor | K’m2 (mM) | I’max3 (µA) | Sensitivity (µA/mM) | Linear Range (µM) | LOD 4 (µM/pmol) |
---|---|---|---|---|---|---|
PCh | Pt/ChO-ALP | 3.6 ± 0.2 | 1.03 ± 0.02 | 0.216 | 7–1000 | 6.9/139 |
Ch | Pt/ChO-ALP | 1.19 ± 0.07 | 3.6 ± 0.1 | 2.03 | 0.7–1000 | 0.68/13.6 |
Ch | Pt/ChO | 2.1 ± 0.3 | 7.3 ± 0.3 | 2.13 | 0.7–1000 | 0.65/13.0 |
Analyte | Biosensor | Sensitivity (µA/mM) | Linear Range (µM) | LOD 2 (µM/pmol) |
---|---|---|---|---|
PCh | Pt/oPPy/ChO-ALP | 0.197 | 3–1000 | 2.7/53.6 |
Ch | Pt/oPPy/ChO-ALP | 1.30 | 0.3–1000 | 0.19/3.9 |
Ch | Pt/oPPy/ChO | 1.39 | 0.3–1000 | 0.28/5.6 |
Analyte | Biosensor | Bias (µM) For: | ||
---|---|---|---|---|
AA (0.1 mM) | AU (0.5 mM) | CYS (0.2 mM) | ||
PCh | Pt/oPPy/ChO-ALP | 1.5 | 1.2 | 1.6 |
Ch | Pt/oPPy/ChO-ALP | 0.19 | 0.15 | 0.22 |
Ch | Pt/oPPy/ChO | 0.2 | 0.14 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriello, R.; Guerrieri, A. A Crosstalk- and Interferent-Free Dual Electrode Amperometric Biosensor for the Simultaneous Determination of Choline and Phosphocholine. Sensors 2021, 21, 3545. https://doi.org/10.3390/s21103545
Ciriello R, Guerrieri A. A Crosstalk- and Interferent-Free Dual Electrode Amperometric Biosensor for the Simultaneous Determination of Choline and Phosphocholine. Sensors. 2021; 21(10):3545. https://doi.org/10.3390/s21103545
Chicago/Turabian StyleCiriello, Rosanna, and Antonio Guerrieri. 2021. "A Crosstalk- and Interferent-Free Dual Electrode Amperometric Biosensor for the Simultaneous Determination of Choline and Phosphocholine" Sensors 21, no. 10: 3545. https://doi.org/10.3390/s21103545
APA StyleCiriello, R., & Guerrieri, A. (2021). A Crosstalk- and Interferent-Free Dual Electrode Amperometric Biosensor for the Simultaneous Determination of Choline and Phosphocholine. Sensors, 21(10), 3545. https://doi.org/10.3390/s21103545