High Accuracy Heartbeat Detection from CW-Doppler Radar Using Singular Value Decomposition and Matched Filter
Abstract
:1. Introduction
2. Basic Formula of CW-Doppler Radar
3. Proposed Method
3.1. Heartbeat Enhancement by Matched Filtering
3.2. Template Generation by Singular Value Decomposition
4. Simulation Analysis
4.1. Configuration of Heart Rate and Respiratory Signal Models
4.2. Method for Determining Parameters
4.3. Simulation Results
5. Experiment
5.1. Experimental Condition
5.2. Description of Effectiveness of Proposed Method Using Actual Data
5.3. Indices for Validating Accuracy of Heart Rate Estimation
5.4. Analysis Results and Discussion of Estimated Cardiac Information
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Iwata, Y.; Ishibashi, K.; Sun, G.; Ha, L.M.; Thanh, H.T.; Trung, N.L.; Tuan, D.T. Contactless Heartbeat Detection from CW-Doppler Radar using Windowed-Singular Spectrum Analysis. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar] [CrossRef]
- Lin, J.C. Microwave sensing of physiological movement and volume change: A review. Bioelectromagnetics 1992, 13, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-M.; Huang, Y.; Zhang, J.; Norman, A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. Biomed. Eng. 2000, 47, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans. Biomed. Eng. 2014, 61, 725–735. [Google Scholar] [CrossRef]
- Alghatrif, M.; Lindsay, J. A brief review: History to understand fundamentals of electrocardiography. J. Community Hospit. Intern. Med. Perspect. 2012, 2, 14383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, M.S.; Gupta, R.; Chandra, J.K.; Sharma, K.D.; Talukdar, A. Improving Photoplethysmographic Measurements Under Motion Artifacts Using Artificial Neural Network for Personal Healthcare. IEEE Trans. Instrum. Meas. 2018, 67, 2820–2829. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Thi Phuoc Van, N.; Tang, L.; Demir, V.; Hasan, S.F.; Duc Minh, N.; Mukhopadhyay, S. Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors 2019, 19, 2879. [Google Scholar] [CrossRef] [Green Version]
- Gu, C. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors 2016, 16, 1169. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Trung, N.V.; Matsui, T.; Ishibashi, K.; Kirimoto, T.; Furukawa, H.; Hoi, L.; Huyen, N.N.; Nguyen, Q.; Abe, S.; et al. Field Evaluation of an Infectious Disease/Fever Screening Radar System During the 2017 Dengue Fever Outbreak in Hanoi, Vietnam. J. Infect. 2017, 75, 593–595. [Google Scholar] [CrossRef]
- Matsui, T.; Kobayashi, T.; Hirano, M.; Kanda, M.; Sun, G.; Otake, Y.; Okada, M.; Watanabe, S.; Hakozaki, Y. A Pneumonia Screening System based on Parasympathetic Activity Monitoring in Non-contact Way using Compact Radars Beneath the Bed Mattress. J. Infect. 2020, 81, e142–e144. [Google Scholar] [CrossRef]
- Chinh, N.D.; Ha, L.M.; Sun, G.; Anh, L.Q.; Huong, P.V.; Vu, T.A.; Hieu, T.T.; Tan, T.D.; Trung, N.V.; Ishibashi, K.; et al. Short Time Cardio-vascular Pulses Estimation for Dengue Fever Screening via Continuous-Wave Doppler Radar using Empirical Mode Decomposition and Continuous Wavelet Transform. Biomed. Signal Process. Control 2021, 65, 102361. [Google Scholar] [CrossRef]
- Yang, X.; Ishibashi, K.; Hoi, L.; Vu, T.N.; Van, K.N.; Sun, G. Dengue Fever Detecting System Using Peak-detection of Data from Contactless Doppler Radar. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 542–545. [Google Scholar] [CrossRef]
- Monstrey, S.; Hoeksema, H.; Verbelen, J.; Pirayesh, A.; Blondeel, P. Assessment of burn depth and burn wound healing potential. Burns 2008, 34, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Zoughi, R. Millimeter Wave Reflectometry and Imaging for Noninvasive Diagnosis of Skin Burn Injuries. IEEE Trans. Instrum. Meas. 2017, 66, 77–84. [Google Scholar] [CrossRef]
- Ding, C.; Chae, R.; Wang, J.; Zhang, L.; Hong, H.; Zhu, X.; Li, C. Inattentive Driving Behavior Detection Based on Portable FMCW Radar. IEEE Trans. Microw. Theory Tech. 2019, 67, 4031–4041. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Ma, C.; Zhu, C.; Gu, Z.; Lv, Q.; Zhang, B.; Li, C.; Ran, L. Doppler Cardiogram: A Remote Detection of Human Heart Activities. IEEE Trans. Microw. Theory Tech. 2020, 68, 1132–1141. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hiromatsu, R.; Ohtsuki, T. ECG Signal Reconstruction via Doppler Sensor by Hybrid Deep Learning Model with CNN and LSTM. IEEE Access 2020, 8, 130551–130560. [Google Scholar] [CrossRef]
- Gu, C.; Wang, G.; Li, Y.; Inoue, T.; Li, C. A Hybrid Radar-Camera Sensing System with Phase Compensation for Random Body Movement Cancellation in Doppler Vital Sign Detection. IEEE Trans. Microw. Theory Tech. 2013, 61, 4678–4688. [Google Scholar] [CrossRef]
- Mostafanezhad, I.; Yavari, E.; Lubecke, O.B.; Lubecke, V.M.; Mandic, D.P. Cancellation of Unwanted Doppler Radar Sensor Motion Using Empirical Mode Decomposition. IEEE Sens. 2013, 13, 1897–1904. [Google Scholar] [CrossRef]
- Li, C.; Lin, J. Random body movement cancellation in Doppler radar vital sign detection. IEEE Trans. Microw. Theory Tech. 2008, 56, 3143–3152. [Google Scholar] [CrossRef]
- Tu, J.; Lin, J. Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique. IEEE Trans. Instrum. Meas. 2016, 65, 112. [Google Scholar] [CrossRef]
- Mishra, A.; McDonnaell, W.; Wang, J.; Rodriguez, D.; Li, C. Intermodulation-based nonlinear smart health sensing of human vital signs and location. IEEE Access 2019, 7, 158284. [Google Scholar] [CrossRef]
- Petrovic, V.L.; Jankovic, M.M.; Lupsic, A.V.; Mihajlovic, V.R.; P-Bozovic, J.S. High-Accuracy Real-Time Monitoring of HeartRate Variability Using 24 GHz Continuous-WaveDoppler Radar. IEEE Access 2019, 7, 74721–74733. [Google Scholar] [CrossRef]
- Saluja, J.; Casanova, J.; Lin, J. A Supervised Machine Learning Algorithm for Heart-rate Detection using Doppler Motion-sensing radar. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 4, 45–51. [Google Scholar] [CrossRef]
- Lv, Q.; Chen, L.; An, K.; Wang, J.; Li, H.; Ye, D.; Huangfu, J.; Li, C.; Ran, L. Doppler Vital Signs Detection in the Presence of Large-Scale Random Body Movements. IEEE Trans. Microw. Theory Tech. 2018, 66, 4261–4270. [Google Scholar] [CrossRef]
- Izumi, S.; Okano, T.; Matsunaga, D.; Kawaguchi, H.; Yoshimoto, M. Non-Contact Instantaneous Heart Rate Extraction System Using 24-GHz Microwave Doppler Sensor. IEICE Trans. Commun. 2019, E102.B, 1088–1096. [Google Scholar] [CrossRef]
- Yang, Z.K.; Zhao, S.; Huang, X.D.; Lu, W. Accurate Doppler Radar-Based Heart Rate Measurement Using Matched Filter. IEICE Electron. Express 2020, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Golyandina, N.E.; Zhigljavsky, A. Singular Spectrum Analysis for Time Series; SpringerBriefs in Statistics; Springer: Berlin/Heidelberg, Germany, 2013; Available online: https://www.springer.com/gp/book/9783642349133 (accessed on 10 March 2021).
- Massagram, W.; Hafner, N.M.; Park, B.; Lubecke, V.M.; Host-Madsen, A.; Boric-Lubecke, O. Feasibility of Heart Rate Variability Measurement from Quadrature Doppler Radar Using Arctangent Demodulation with DC Offset Compensation. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1643–1646. [Google Scholar] [CrossRef]
- Park, B.; Boric-Lubecke, O.; Lubecke, V.M. Arctangent Demodulation With DC Offset Compensation in Quadrature Doppler Radar Receiver Systems. IEEE Trans Microw. Theory Tech. 2007, 55, 1073–1079. [Google Scholar] [CrossRef]
- Xue, Q.; Hu, Y.H.; Tompkins, W.J. Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 1992, 39, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, Q.; You, J.; Zhang, D. A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 528–534. [Google Scholar] [CrossRef]
- Zhanga, B.; Zhangb, L.; Karraya, F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 2010, 40, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, X.; Chen, L.; Huangfu, J.; Li, C.; Ran, L. Non contact distance and amplitude-independent vibration measurement based on an extended DACM algorithm. IEEE Trans. Instrum. Meas. 2014, 63, 145–153. [Google Scholar] [CrossRef]
- Park, J.; Ham, J.W.; Park, S.; Kim, D.H.; Park, S.J.; Kang, H.; Park, S.O. Polyphase-basis discrete cosine transform for real-time measurement of heart rate with CW Doppler radar. IEEE Trans. Microw. Theory Techn. 2018, 66, 1644–1659. [Google Scholar] [CrossRef]
- Nosrati, M.; Tavassolian, N. High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train modeling and FTPR algorithm. IEEE Trans. Microw. Theory Tech. 2018, 66, 556–567. [Google Scholar] [CrossRef]
- Albanese, A.; Cheng, L.; Ursino, M.; Chbat, N.W. An integrated mathematical model of the human cardiopulmonary system: Model development. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H899–H921. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description | Value |
---|---|---|
Model constants for amplitude adjustment | (m) | |
T | Period of respiratory waveform | (s) |
Term of expiration in respiration one wave form | (s) | |
Term of inhalation in respiration one waveform | (s) | |
Time constant | 0.8 (s) |
Index | Displacement (mm) | Frequency (bpm) |
---|---|---|
Heartbeat | 0.5 | 60 |
Breathing | 0.5–20 | 15 |
White noise | 0.1 | - |
Data | AE of HR (bpm) | AE of SDHI (s) | RMSE (s) | |||
---|---|---|---|---|---|---|
BPF | SVD+MF | BPF | SVD+MF | BPF | SVD+MF | |
1 | 15.1 | 5.6 | 0.138 | 0.070 | 0.33 | 0.19 |
2 | 6.6 | 3.8 | 0.075 | 0.067 | 0.24 | 0.22 |
3 | 7.0 | 0.80 | 0.177 | 0.017 | 0.24 | 0.07 |
4 | 11.3 | 3.3 | 0.224 | 0.093 | 0.39 | 0.16 |
5 | 8.0 | 0.47 | 0.171 | 0.046 | 0.34 | 0.12 |
6 | 1.3 | 0.60 | 0.099 | 0.062 | 0.20 | 0.16 |
7 | 3.1 | 0.08 | 0.077 | 0.017 | 0.25 | 0.11 |
8 | 9.5 | 1.0 | 0.179 | 0.030 | 0.34 | 0.16 |
9 | 5.8 | 0.67 | 0.179 | 0.066 | 0.30 | 0.21 |
10 | 3.9 | 2.9 | 0.112 | 0.103 | 0.25 | 0.21 |
Total |
Index | Lying | Sitting | ||
---|---|---|---|---|
BPF | SVD+MF | BPF | SVD+MF | |
AE of HR (bpm) | ||||
AE of SDHI (ms) | ||||
RMSE (ms) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwata, Y.; Thanh, H.T.; Sun, G.; Ishibashi, K. High Accuracy Heartbeat Detection from CW-Doppler Radar Using Singular Value Decomposition and Matched Filter. Sensors 2021, 21, 3588. https://doi.org/10.3390/s21113588
Iwata Y, Thanh HT, Sun G, Ishibashi K. High Accuracy Heartbeat Detection from CW-Doppler Radar Using Singular Value Decomposition and Matched Filter. Sensors. 2021; 21(11):3588. https://doi.org/10.3390/s21113588
Chicago/Turabian StyleIwata, Yuki, Han Trong Thanh, Guanghao Sun, and Koichiro Ishibashi. 2021. "High Accuracy Heartbeat Detection from CW-Doppler Radar Using Singular Value Decomposition and Matched Filter" Sensors 21, no. 11: 3588. https://doi.org/10.3390/s21113588