Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA
Abstract
:1. Introduction
2. Theoretical Background
2.1. Transformer Vibration
2.2. Statistical Time Features
2.3. Feature Reduction
2.3.1. Feature Selection
2.3.2. Feature Extraction
2.4. Support Vector Machine
3. Proposed Methodology
3.1. Design Stage
3.2. Implementation Stage
4. Experiments and Results
4.1. Experimental Setup
4.2. Design Results
4.2.1. Feature Estimation and Normalization
4.2.2. Feature Selection
4.2.3. Feature Extraction
4.2.4. Classification Results
4.3. FPGA Implementation
4.3.1. Statistical Time Features Estimation
4.3.2. Feature Normalization and Feature Extraction
4.3.3. SVM Classifier
4.3.4. Results
5. Conclusions
- The methodology developed and implemented into the FPGA can diagnose eight severity levels of SCTs in a transformer by measuring the vibration signals from the top of the transformer core;
- The feature reduction allows obtaining the best set of features, selecting the features that present the most relevant information related to the transformer performance and then, reducing the dimensional space;
- The Fisher score implementation to select features allows reducing from an extensive number of features a set of only seven STFs, i.e., three for the x-axis: SRM, kurtosis factor, and LEE, and four for the y-axis: RMS, standard deviation, variance, and kurtosis factor;
- For reducing the dimensional space, the LDA method presents a more satisfactory performance than the PCA method, simplifying the classification process;
- The SVM classifier can classify among eight severities of SCT with an accuracy of 96.82%. The results also demonstrate that the SVM classifier performs better than an ANN under the same experimental setup;
- The processor core makes use of low FPGA resources, presents a maximum relative error of 2% if it is compared with its floating-point computation in Matlab software, and requires a small computing time (≈1.24 ms) to offer a diagnosis result;
- All these characteristics show the suitability of the FPGA technology for a future device development, e.g., a smart sensor since the accelerometer, the DAS, and the FPGA-based processor represents the basic elements that compose it;
- The proposed methodology and the individually developed cores could also be adaptable and calibrated to other applications such as assessment buildings, bridges, wind turbines, induction motors, and other types of equipment as demonstrated in the literature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagheri, M.; Naderi, M.; Blackburn, T. Advanced transformer winding deformation diagnosis: Moving from off-line to on-line. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1860–1870. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Tang, C.; Yao, C.; Li, C.; Islam, S. Classifying Transformer Winding Deformation Fault Types and Degrees Using FRA Based on Support Vector Machine. IEEE Access 2019, 7, 112494–112504. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J.; Huang, H. Experimental research on power transformer vibration distribution under different winding defect conditions. Electronics 2019, 8, 842. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Lee, G.; Hettiwatte, S.N. A review of condition monitoring techniques and diagnostic tests for lifetime estimation of power transformers. Electr. Eng. 2018, 100, 581–605. [Google Scholar] [CrossRef]
- García, B.; Burgos, J.C.; Alonso, Á.M. Transformer tank vibration modeling as a method of detecting winding deformations—Part I: Theoretical foundation. IEEE Trans. Power Deliv. 2006, 21, 157–163. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; Zhang, R.; Jiang, P.; Liu, G.; Ahmed, S.; Dong, Z. Novel Transformer Fault Identification Optimization Method Based on Mathematical Statistics. Mathematics 2019, 7, 288. [Google Scholar] [CrossRef] [Green Version]
- Mejia-Barron, A.; Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Olivares-Galvan, J.C.; Escarela-Perez, R. The application of EMD-based methods for diagnosis of winding faults in a transformer using transient and steady state currents. Meas. J. Int. Meas. Confed. 2018, 117, 371–379. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, W.; Kozik, J.; Piech, K.; Gutten, M.; Caesarendra, W.; Liu, H.; Brumercik, F.; Irfan, M.; Faizal Khan, Z. Detection of Deterioration of Three-phase Induction Motor using Vibration Signals. Meas. Sci. Rev. 2019, 19, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Nayana, B.R.; Geethanjali, P. Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults from Vibration Signal. IEEE Sens. J. 2017, 17, 5618–5625. [Google Scholar] [CrossRef]
- Yanez-borjas, J.J.; Valtierra-rodriguez, M.; Camarena, D.; Amezquita-sanchez, J.P. Statistical time features for global corrosion assessment in a truss bridge from vibration signals. Measurement 2020, 107858. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, H.; Pan, J. Detection of Winding Faults Based on a Characterization of the Nonlinear Dynamics of Transformers. IEEE Trans. Instrum. Meas. 2018, 68, 206–214. [Google Scholar] [CrossRef]
- Hong, K.; Huang, H.; Zhou, J. Winding Condition Assessment of Power Transformers Based on Vibration Correlation. IEEE Trans. Power Deliv. 2015, 30, 1735–1742. [Google Scholar] [CrossRef]
- Bartoletti, C.; Desiderio, M.; Di Carlo, D.; Fazio, G.; Muzi, F.; Sacerdoti, G.; Salvatori, F. Vibro-Acoustic Techniques to Diagnose Power Transformers. IEEE Trans. Power Deliv. 2004, 19, 221–229. [Google Scholar] [CrossRef]
- Bagheri, M.; Nezhivenko, S.; Naderi, M.S.; Zollanvari, A. A new vibration analysis approach for transformer fault prognosis over cloud environment. Int. J. Electr. Power Energy Syst. 2018, 100, 104–116. [Google Scholar] [CrossRef]
- Huerta-Rosales, J.R.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P.; Camarena-Martinez, D.; Valtierra-Rodriguez, M. Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach. Mathematics 2020, 8, 575. [Google Scholar] [CrossRef]
- Borucki, S. Diagnosis of technical condition of power transformers based on the analysis of vibroacoustic signals measured in transient operating conditions. IEEE Trans. Power Deliv. 2012, 27, 670–676. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, X.; Ji, S.; Shi, Y.; Zhang, F.; Fu, Y.; Jiang, Z. Fault Diagnosis of OLTC Based on Time-Frequency Image Analysis of Vibration Signal. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; pp. 1–6. [Google Scholar]
- Zhao, M.; Xu, G. Feature extraction of power transformer vibration signals based on empirical wavelet transform and multiscale entropy. IET Sci. Meas. Technol. 2018, 12, 63–71. [Google Scholar] [CrossRef]
- Wu, S.; Huang, W.; Kong, F.; Wu, Q.; Zhou, F.; Zhang, R.; Wang, Z. Extracting Power Transformer Vibration Features by a Time-Scale-Frequency Analysis Method. J. Electromagn. Anal. Appl. 2010, 2, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Amezquita-Sanchez, J.P.; Adeli, H. A new music-empirical wavelet transform methodology for time-frequency analysis of noisy nonlinear and non-stationary signals. Digit. Signal Process. A Rev. J. 2015, 45, 55–68. [Google Scholar] [CrossRef]
- García, B.; Burgos, J.C.; Alonso, Á. Winding deformations detection in power transformers by tank vibrations monitoring. Electr. Power Syst. Res. 2005, 74, 129–138. [Google Scholar] [CrossRef]
- Zhou, H.; Hong, K.; Huang, H.; Zhou, J. Transformer winding fault detection by vibration analysis methods. Appl. Acoust. 2016, 114, 136–146. [Google Scholar] [CrossRef]
- Hong, K.; Huang, H.; Zhou, J.; Shen, Y.; Li, Y. A method of real-time fault diagnosis for power transformers based on vibration analysis. Meas. Sci. Technol. 2015, 26, 115011. [Google Scholar] [CrossRef]
- Castro, A.R.G.; Miranda, V. Knowledge Discovery in Neural Networks With Application to Transformer Failure Diagnosis. IEEE Trans. Power Syst. 2005, 20, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Valtierra-Rodriguez, M. Fractal dimension and data mining for detection of short-circuited turns in transformers from vibration signals. Meas. Sci. Technol. 2020, 31, 025902. [Google Scholar] [CrossRef]
- Bigdeli, M.; Vakilian, M.; Rahimpour, E. Transformer winding faults classification based on transfer function analysis by support vector machine. IET Electr. Power Appl. 2012, 6, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, J.; Xu, Y.; Zheng, Y.; Peng, X.; Jiang, W. Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks. Neurocomputing 2018, 315, 412–424. [Google Scholar] [CrossRef]
- Chen, G.; Lu, G.; Liu, J.; Yan, P. An integrated framework for statistical change detection in running status of industrial machinery under transient conditions. ISA Trans. 2019, 94, 294–306. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Zhou, L.; Nian, Y.; Shao, Y. A statistical feature investigation of the spalling propagation assessment for a ball bearing. Mech. Mach. Theory 2019, 131, 336–350. [Google Scholar] [CrossRef]
- Jan, S.U.; Lee, Y.D.; Shin, J.; Koo, I. Sensor Fault Classification Based on Support Vector Machine and Statistical Time-Domain Features. IEEE Access 2017, 5, 8682–8690. [Google Scholar] [CrossRef]
- Hostetter, M.; Ahmadzadeh, A.; Aydin, B.; Georgoulis, M.K.; Kempton, D.J.; Angryk, R.A. Understanding the Impact of Statistical Time Series Features for Flare Prediction Analysis. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4960–4966. [Google Scholar] [CrossRef]
- Devi, R.L.; Kalaivani, V. Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG. J. Supercomput. 2019, 1–12. [Google Scholar] [CrossRef]
- Ong, P.; Zainuddin, Z.; Lai, K.H. A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals. Pattern Anal. Appl. 2018, 21, 515–527. [Google Scholar] [CrossRef]
- Samuel, O.W.; Zhou, H.; Li, X.; Wang, H.; Zhang, H.; Sangaiah, A.K.; Li, G. Pattern recognition of electromyography signals based on novel time domain features for amputees’ limb motion classification. Comput. Electr. Eng. 2018, 67, 646–655. [Google Scholar] [CrossRef]
- Xia, Y.; Gao, Q.; Ye, Q. Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models. Biomed. Signal Process. Control 2015, 18, 254–262. [Google Scholar] [CrossRef]
- Caesarendra, W.; Tjahjowidodo, T. A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing. Machines 2017, 5, 21. [Google Scholar] [CrossRef]
- Xue, X.; Zhou, J. A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery. ISA Trans. 2017, 66, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Zhao, Z.; Wang, J. Bearing fault diagnosis based on statistical locally linear embedding. Sensors 2015, 15, 16225–16247. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Dorantes, J.J.; Delgado-Prieto, M.; Osornio-Rios, R.A.; Romero-Troncoso, R.D.J. Diagnosis methodology for identifying gearbox wear based on statistical time feature reduction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 2711–2722. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Fu, S.; Wang, F. Decision tree SVM model with Fisher feature selection for speech emotion recognition. Eurasip J. Audio, Speech, Music Process. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Santos-Hernandez, J.A.; Valtierra-Rodriguez, M.; Amezquita-Sanchez, J.P.; Romero-Troncoso, R.D.J.; Camarena-Martinez, D. Hilbert filter based FPGA architecture for power quality monitoring. Measurement 2019, 147, 106819. [Google Scholar] [CrossRef]
- Martinez-Figueroa, G.D.J.; Morinigo-Sotelo, D.; Zorita-Lamadrid, A.L.; Morales-Velazquez, L.; Romero-Troncoso, R.D.J. FPGA-based smart sensor for detection and classification of power quality disturbances using higher order statistics. IEEE Access 2017, 5, 14259–14274. [Google Scholar] [CrossRef]
- Hong, K.; Huang, H.; Fu, Y.; Zhou, J. A vibration measurement system for health monitoring of power transformers. Meas. J. Int. Meas. Confed. 2016, 93, 135–147. [Google Scholar] [CrossRef]
- Bagheri, M.; Zollanvari, A.; Nezhivenko, S. Transformer Fault Condition Prognosis Using Vibration Signals Over Cloud Environment. IEEE Access 2018, 6, 9862–9874. [Google Scholar] [CrossRef]
- Hu, C.; Wang, P.; Youn, B.D.; Lee, W.R.; Yoon, J.T. Copula-based statistical health grade system against mechanical faults of power transformers. IEEE Trans. Power Deliv. 2012, 27, 1809–1819. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wu, Q.H.; Ji, T.Y.; Zhang, A.Q. Identification of inrush currents in power transformers based on higher-order statistics. Electr. Power Syst. Res. 2017, 146, 161–169. [Google Scholar] [CrossRef]
- Sharma, A.; Amarnath, M.; Kankar, P.K. Feature extraction and fault severity classification in ball bearings. JVC/Journal Vib. Control 2016, 22, 176–192. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Delgado-Prieto, M.; Osornio-Rios, R.A.; De Jesus Romero-Troncoso, R. Multifault Diagnosis Method Applied to an Electric Machine Based on High-Dimensional Feature Reduction. IEEE Trans. Ind. Appl. 2017, 53, 3086–3097. [Google Scholar] [CrossRef] [Green Version]
- Rostaminia, R.; Sanie, M.; Vakilian, M.; Mortazavi, S.S.; Parvin, V. Accurate power transformer PD pattern recognition via its model. IET Sci. Meas. Technol. 2016, 10, 745–753. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kim, J.M. Fault detection of a spherical tank using a genetic algorithm-based hybrid feature pool and k-nearest neighbor algorithm. Energies 2019, 12, 991. [Google Scholar] [CrossRef] [Green Version]
- Van, M.; Kang, H.J. Wavelet Kernel Local Fisher Discriminant Analysis with Particle Swarm Optimization Algorithm for Bearing Defect Classification. IEEE Trans. Instrum. Meas. 2015, 64, 3588–3600. [Google Scholar] [CrossRef]
- Korn, F.; Pagel, B.; Faloutsos, C. On the “Dimensionality Curse” and the “Self-Similarity Blessing”. Knowl. Creat. Diffus. Util. 2001, 13, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Li, Z.; Han, J. Generalized fisher score for feature selection. arXiv 2012, arXiv:1202.3725. [Google Scholar]
- Liu, Y.; Nie, F.; Wu, J.; Chen, L. Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 2013, 105, 12–18. [Google Scholar] [CrossRef]
- Mboo, C.P.; Hameyer, K. Fault diagnosis of bearing damage by means of the linear discriminant analysis of stator current features from the frequency selection. IEEE Trans. Ind. Appl. 2016, 52, 3861–3868. [Google Scholar] [CrossRef]
- Wen, J.; Fang, X.; Cui, J.; Fei, L.; Yan, K.; Chen, Y.; Xu, Y. Robust Sparse Linear Discriminant Analysis. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 390–403. [Google Scholar] [CrossRef]
- Shahdoosti, H.R.; Mirzapour, F. Spectral–spatial feature extraction using orthogonal linear discriminant analysis for classification of hyperspectral data. Eur. J. Remote Sens. 2017, 50, 111–124. [Google Scholar] [CrossRef]
- Xu, J. A weighted linear discriminant analysis framework for multi-label feature extraction. Neurocomputing 2018, 275, 107–120. [Google Scholar] [CrossRef]
- Kari, T.; Gao, W.; Zhao, D.; Abiderexiti, K.; Mo, W.; Wang, Y.; Luan, L. Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm. IET Gener. Transm. Distrib. 2018, 12, 5672–5680. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Ni, T.; Cheng, P.; Lei, S. Wind power prediction based on LS-SVM model with error correction. Adv. Electr. Comput. Eng. 2017, 17, 3–8. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, D.; Yang, W. Global geometric similarity scheme for feature selection in fault diagnosis. Expert Syst. Appl. 2014, 41, 3585–3595. [Google Scholar] [CrossRef]
- Tarimoradi, H.; Gharehpetian, G.B.; Member, S. A Novel Calculation Method of Indices to Improve Classification of Transformer Winding Fault Type, Location and Extent. IEEE Trans. Ind. Inform. 2017, 13, 1531–1540. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Osornio-Rios, R.A.; Trejo-Hernandez, M.; Romero-Troncoso, R.d.J.; Antonino-Daviu, J.A. Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux. Energies 2019, 12, 1658. [Google Scholar] [CrossRef] [Green Version]
- Urbikain, G.; López de Lacalle, L.N. MoniThor: A complete monitoring tool for machining data acquisition based on FPGA programming. SoftwareX 2020, 11, 100387. [Google Scholar] [CrossRef]
- Milton, M.; Benigni, A. ORTiS solver codegen: C++ code generation tools for high performance, FPGA-based, real-time simulation of power electronic systems. SoftwareX 2021, 13, 100660. [Google Scholar] [CrossRef]
- Urbikain, G.; Olvera, D.; de Lacalle, L.N.L.; Elías-Zúñiga, A. Spindle speed variation technique in turning operations: Modeling and real implementation. J. Sound Vib. 2016, 383, 384–396. [Google Scholar] [CrossRef]
- Yin, P.; Wang, C.; Waris, H.; Liu, W.; Han, Y.; Lombardi, F. Design and Analysis of Energy-Efficient Dynamic Range Approximate Logarithmic Multipliers for Machine Learning. IEEE Trans. Sustain. Comput. 2020, 1–13. [Google Scholar] [CrossRef]
- Bustillo, A.; Urbikain, G.; Perez, J.M.; Pereira, O.M.; Lopez de Lacalle, L.N. Smart optimization of a friction-drilling process based on boosting ensembles. J. Manuf. Syst. 2018, 48, 108–121. [Google Scholar] [CrossRef]
Feature | Equation | Feature | Equation | ||
---|---|---|---|---|---|
Mean | (3) | Impulse Factor | (13) | ||
Maximum Value | (4) | Skewness | (14) | ||
RMS | (5) | Skewness Factor | (15) | ||
SRM | (6) | Kurtosis | (16) | ||
Variance | (7) | Kurtosis Factor | (17) | ||
Standard Deviation | (8) | Normalized 5th central Moment | (18) | ||
Shape Factor for RMS | (9) | Normalized 6th central Moment | (19) | ||
Shape Factor for SRM | (10) | Shannon Entropy | (20) | ||
Crest Factor | (11) | Log Energy Entropy | (21) | ||
Latitude Factor | (12) |
Threshold | Features | SVM (%) | ANN (%) |
---|---|---|---|
0 | 38 | 97.76 | 95.29 |
30 | 10 | 96.76 | 93.98 |
35 | 7 | 96.82 | 94.97 |
40 | 5 | 96.64 | 94.33 |
SCTs | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
---|---|---|---|---|---|---|---|---|
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 40 | 1 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
25 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
30 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
Digital Structure | Word Length | Time (Clock Cycles) | Relative Error (%) |
---|---|---|---|
SVM | e = 7, f = 20 | 0.33 | |
Feature Extraction | e = 2, f = 16 | 14 | 0.3 |
Feature Normalization | e = 2, f = 16 | 10 | 1.67 |
SRM | e = 2, f = 16 | 2 | |
Kurtosis Factor | e = 24, f = 16 | 0.05 | |
Log Energy Entropy | e = 16, f = 16 | 1.11 | |
RMS | e = 2, f = 16 | 0.004 | |
Standard Deviation | e = 2, f = 16 | 0.002 | |
Variance | e = 2, f = 16 | 0.0002 | |
Total time with a 50 MHz clock | 61,967 clock cycles 1,239,340 ns |
Digital Structure | Logic Elements (%) | Registers (%) | Multipliers 9-Bit (%) | Memory Bits (%) |
---|---|---|---|---|
SVM | 6361 (6%) | 1564 (1%) | 256 (48%) | 0 (0%) |
Feature Extraction | 178 (<1%) | 101 (<1%) | 4 (<1%) | 73,728 (2%) |
Feature Normalization | 478 (<1%) | 144 (<1%) | 20 (4%) | 0 (0%) |
SRM | 360 (<1%) | 166 (<1%) | 6 (1%) | 0 (0%) |
Kurtosis Factor | 1818 (2%) | 870 (<1%) | 35 (7%) | 0 (0%) |
Log Energy Entropy | 221 (<1%) | 121 (<1%) | 6 (1%) | 0 (0%) |
RMS | 315 (<1%) | 184 (<1%) | 6 (1%) | 0 (0%) |
Standard Deviation | 577 (<1%) | 336 (<1%) | 10 (2%) | 0 (0%) |
Variance | 513 (<1%) | 300 (<1%) | 8 (2%) | 0 (0%) |
Total Processor | 12,639 (12%) | 4656 (5%) | 386 (73%) | 73,728 (2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Rosales, J.R.; Granados-Lieberman, D.; Garcia-Perez, A.; Camarena-Martinez, D.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M. Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA. Sensors 2021, 21, 3598. https://doi.org/10.3390/s21113598
Huerta-Rosales JR, Granados-Lieberman D, Garcia-Perez A, Camarena-Martinez D, Amezquita-Sanchez JP, Valtierra-Rodriguez M. Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA. Sensors. 2021; 21(11):3598. https://doi.org/10.3390/s21113598
Chicago/Turabian StyleHuerta-Rosales, Jose R., David Granados-Lieberman, Arturo Garcia-Perez, David Camarena-Martinez, Juan P. Amezquita-Sanchez, and Martin Valtierra-Rodriguez. 2021. "Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA" Sensors 21, no. 11: 3598. https://doi.org/10.3390/s21113598
APA StyleHuerta-Rosales, J. R., Granados-Lieberman, D., Garcia-Perez, A., Camarena-Martinez, D., Amezquita-Sanchez, J. P., & Valtierra-Rodriguez, M. (2021). Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA. Sensors, 21(11), 3598. https://doi.org/10.3390/s21113598