Location-Based Resource Allocation in Ultra-Dense Network with Clustering †
Abstract
:1. Introduction
2. System Model
3. Resource Allocation Schemes
3.1. Cluster Formation
3.2. Link Formation
3.3. Proposed Subcarrier Allocation
3.3.1. Computing Location-Based Interference Matrix
Algorithm 1 Process to Compute the G Matrix. |
Input: is the number of BSs and are the cluster number of the -th and -th SBSs. Output: interference between the -th SBS and -th SBS . |
|
3.3.2. Subcarrier Allocation
Algorithm 2 Subcarrier Assignment Algorithm. |
Input: Subcarrier ), BS ), UE ). interference between the -th and -th BSs, . Output: Subcarrier allocated from the BS to the UE . Initialization: Subcarrier allocated to the UE .
|
4. Power Allocation Scheme
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adedoyin, M.A.; Falowo, O.E. Combination of Ultra-Dense Networks and Other 5G Enabling Technologies: A Survey. IEEE Access 2020, 8, 22893–22932. [Google Scholar] [CrossRef]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- López-Pérez, D.; Ding, M.; Claussen, H.; Jafari, A.H. Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments. IEEE Commun. Surv. Tutor. 2015, 17, 2078–2101. [Google Scholar] [CrossRef] [Green Version]
- Kamel, M.; Hamouda, W.; Youssef, A. Ultra-Dense Networks: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2522–2545. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, J.; Su, X.; Xu, X.; Xiao, L. Joint CoMP and power allocation in ultra dense networks. In 2017 Wireless Telecommunications Symposium (WTS); IEEE: Chicago, IL, USA, 2017; pp. 1–5. [Google Scholar]
- Georgakopoulos, P.; Akhtar, T.; Politis, I.; Tselios, C.; Markakis, E.; Kotsopoulos, S. Coordination multipoint enabled small cells for coalition-game-based radio resource management. IEEE Netw. 2019, 33, 63–69. [Google Scholar] [CrossRef]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Jia, W. Improved clustering and resource allocation for ultra-dense networks. China Commun. 2020, 17, 220–231. [Google Scholar] [CrossRef]
- Kim, E.; Lee, J.; Kim, Y.; Hong, E. Analysis of the Optimal Number of Clusters in UDN Environment. In 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS); IEEE: Singapore, 2019; pp. 1–4. [Google Scholar]
- Kim, S.; Kim, J. Resource Allocation in Cluster based Ultra Dense Network. In 2020 International Conference on Information and Communication Technology Convergence (ICTC); IEEE: Jeju Island, Korea, 2020; pp. 1128–1131. [Google Scholar]
- ElSawy, H.; Hossain, E.; Haenggi, M. Stochastic Geometry for Modeling, Analysis, and Design of Multi-Tier and Cognitive Cellular Wireless Networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 996–1019. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of SBSs | 20 |
Number of UEs | 12 |
Number of subcarriers | 3 |
Service radius of the SBSs (m) | 15 |
Path-loss exponent factor (u) | 3.5 |
Variance of the noise | 0.1 |
Maximum power of a SBS (dBm) | 10 |
Number of clusters | 5, 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Kim, J.-G. Location-Based Resource Allocation in Ultra-Dense Network with Clustering. Sensors 2021, 21, 4022. https://doi.org/10.3390/s21124022
Kim S-J, Kim J-G. Location-Based Resource Allocation in Ultra-Dense Network with Clustering. Sensors. 2021; 21(12):4022. https://doi.org/10.3390/s21124022
Chicago/Turabian StyleKim, Seong-Jung, and Jeong-Gon Kim. 2021. "Location-Based Resource Allocation in Ultra-Dense Network with Clustering" Sensors 21, no. 12: 4022. https://doi.org/10.3390/s21124022
APA StyleKim, S. -J., & Kim, J. -G. (2021). Location-Based Resource Allocation in Ultra-Dense Network with Clustering. Sensors, 21(12), 4022. https://doi.org/10.3390/s21124022