Lateral Abdominal Muscles Shear Modulus and Thickness Measurements under Controlled Ultrasound Probe Compression by External Force Sensor: A Comparison and Reliability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Investigators
2.4. Equipment and Data Analysis
2.5. Measurement Procedures
2.6. Statistical Analyses
3. Results
3.1. Reliability
3.2. Between-Examiner Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emami, F.; Yoosefinejad, A.K.; Razeghi, M. Correlations between core muscle geometry, pain intensity, functional disability and postural balance in patients with nonspecific mechanical low back pain. Med. Eng. Phys. 2018. [Google Scholar] [CrossRef]
- ShahAli, S.; Arab, A.M.; Ebrahimi, E.; ShahAli, S.; Rahmani, N.; Negahban, H.; Kazemnejad, A.; Bahmani, A. Ultrasound measurement of abdominal muscles during clinical isometric endurance tests in women with and without low back pain. Physiother. Theory Pract. 2019, 35, 130–138. [Google Scholar] [CrossRef]
- Rahmani, N.; Mohseni-Bandpei, M.A.; Salavati, M.; Vameghi, R.; Abdollahi, I. Comparative Study of Abdominal Muscle Thickness on Ultrasonography in Healthy Adolescents and Patients with Low Back Pain. J. Ultrasound Med. 2018, 37, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Borna, S.; Noormohammadpour, P.; Linek, P.; Mansournia, M.A.; Kordi, R. Ultrasound measurements of the lateral abdominal muscle thicknesses in girls with adolescent idiopathic scoliosis. Asian J. Sports Med. 2017, 8. [Google Scholar] [CrossRef]
- Estenne, M.; Derom, E.; De Troyer, A. Neck and abdominal muscle activity in patients with severe thoracic scoliosis. Am. J. Respir. Crit. Care Med. 1998, 158, 452–457. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, C.-Y.; Lee, B.-K.; Seo, D. A comparison of ultrasonography measurement on the abdominal muscle thickness between adolescent idiopathic scoliosis and healthy subjects. J. Back Musculoskelet. Rehabil. 2018, 31, 65–74. [Google Scholar] [CrossRef]
- Linek, P.; Wolny, T.; Saulicz, E.; Myśliwiec, A. Side differences of the lateral abdominal wall in supine rest position in mild adolescent idiopathic thoracolumbar scoliosis. Turkish J. Phys. Med. Rehabil. 2017, 63, 224–229. [Google Scholar] [CrossRef]
- Linek, P.; Saulicz, E.; Kuszewski, M.; Wolny, T. Ultrasound Assessment of the Abdominal Muscles at Rest and during the ASLR Test among Adolescents with Scoliosis. Clin. Spine Surg. 2017, 30, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Linek, P.; Saulicz, E.; Wolny, T.; Myśliwiec, A.; Gogola, A. Ultrasound evaluation of the symmetry of abdominal muscles in mild adolescent idiopathic scoliosis. J. Phys. Ther. Sci. 2015, 27, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.S.; Yoo, J.W.; Lee, B.A.; Choi, C.K.; You, J.H. Inter-tester and intra-tester reliability of ultrasound imaging measurements of abdominal muscles in adolescents with and without idiopathic scoliosis: A case-controlled study. Biomed. Mater. Eng. 2014, 24, 453–458. [Google Scholar] [CrossRef]
- Linek, P.; Pałac, M.; Wolny, T. Shear wave elastography of the lateral abdominal muscles in C-shaped idiopathic scoliosis: A case–control study. Sci. Rep. 2021, 11, 6026. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Jeong, W.K. Current status of musculoskeletal application of shear wave elastography. Ultrasonography 2017, 36, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Amerijckx, C.; Goossens, N.; Pijnenburg, M.; Musarra, F.; van Leeuwen, D.M.; Schmitz, M.; Janssens, L. Influence of phase of respiratory cycle on ultrasound imaging of deep abdominal muscle thickness. Musculoskelet. Sci. Pract. 2020, 46, 102105. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, F.; Arab, A.M.; Salavati, M.; Jaberzadeh, S.; Hajihasani, A. Ultrasound Measurement of Abdominal Muscle Thickness with and without Transducer Fixation during Standing Postural Tasks in Participants with and without Chronic Low Back Pain: Intrasession and Intersession Reliability. PMR 2016, 8, 1159–1167. [Google Scholar] [CrossRef]
- Linek, P.; Klepek, A.; Wolny, T.; Mikołajowski, G. Reliability of the lateral abdominal muscle thickness measurements in idiopathic scoliosis patients. Musculoskelet. Sci. Pract. 2018. [Google Scholar] [CrossRef]
- Linek, P.; Wolny, T.; Sikora, D.; Klepek, A. Supersonic Shear Imaging for Quantification of Lateral Abdominal Muscle Shear Modulus in Pediatric Population with Scoliosis: A Reliability and Agreement Study. Ultrasound Med. Biol. 2019, 45, 1551–1561. [Google Scholar] [CrossRef]
- Linek, P.; Saulicz, E.; Wolny, T.; Myśliwiec, A. Reliability of B-mode sonography of the abdominal muscles in healthy adolescents in different body positions. J. Ultrasound Med. 2014, 33, 1049–1056. [Google Scholar] [CrossRef]
- Wilson, A.; Hides, J.A.; Blizzard, L.; Callisaya, M.; Cooper, A.; Srikanth, V.K.; Winzenberg, T.; Bland, J.; Altman, D.; Critchley, D.J.; et al. Measuring ultrasound images of abdominal and lumbar multifidus muscles in older adults: A reliability study. Man. Ther. 2016, 23, 114–119. [Google Scholar] [CrossRef]
- Linek, P.; Saulicz, E.; Wolny, T.; Myśliwiec, A. Intra-rater reliability of B-mode ultrasound imaging of the abdominal muscles in healthy adolescents during the active straight leg raise test. PMR 2015, 7, 53–59. [Google Scholar] [CrossRef]
- Taghipour, M.; Mohseni-Bandpei, M.A.; Behtash, H.; Abdollahi, I.; Rajabzadeh, F.; Pourahmadi, M.R.; Emami, M. Reliability of Real-time Ultrasound Imaging for the Assessment of Trunk Stabilizer Muscles: A Systematic Review of the Literature. J. Ultrasound Med. 2019, 38, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, D.; Wan, A.; McPhee, M.; Tucker, K.; Hug, F. Reliability of Abdominal Muscle Stiffness Measured Using Elastography during Trunk Rehabilitation Exercises. Ultrasound Med. Biol. 2016, 42, 1018–1025. [Google Scholar] [CrossRef]
- Linek, P.; Wolny, T.; Sikora, D.; Klepek, A. Intrarater Reliability of Shear Wave Elastography for the Quantification of Lateral Abdominal Muscle Elasticity in Idiopathic Scoliosis Patients. J. Manip. Physiol. Ther. 2020, 43, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Mannion, A.F.; Pulkovski, N.; Toma, V.; Sprott, H. Abdominal muscle size and symmetry at rest and during abdominal hollowing exercises in healthy control subjects. J. Anat. 2008, 213, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linek, P.; Saulicz, E.; Wolny, T.; Myśliwiec, A. Body mass normalization for ultrasound measurements of adolescent lateral abdominal muscle thickness. J. Ultrasound Med. 2017, 36, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.; Cosgrove, D.; Dietrich, C.; Fromageau, J.; Bojunga, J.; Calliada, F.; Cantisani, V.; Correas, J.-M.; D’Onofrio, M.; Drakonaki, E.; et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall Med. Eur. J. Ultrasound 2013, 34, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Vachutka, J.; Sedlackova, Z.; Furst, T.; Herman, M.; Herman, J.; Salzman, R.; Dolezal, L. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements. Ultrason. Imaging 2018, 40, 380–393. [Google Scholar] [CrossRef]
- Barr, R.G.; Zhang, Z. Effects of Precompression on Elasticity Imaging of the Breast. J. Ultrasound Med. 2012, 31, 895–902. [Google Scholar] [CrossRef]
- Herman, J.; Sedlackova, Z.; Vachutka, J.; Furst, T.; Salzman, R.; Vomacka, J. Shear wave elastography parameters of normal soft tissues of the neck. Biomed. Pap. 2017, 161, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, K.; Akagi, R.; Takahashi, H. Reliability of ultrasound elastography for the quantification of transversus abdominis elasticity. Acta Radiol. Short Rep. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Linek, P.; Saulicz, E.; Wolny, T.; Myśliwiec, A. Assessment of the abdominal muscles at rest and during abdominal drawing-in manoeuvre in adolescent physically active girls: A case–control study. J. Sport Heal. Sci. 2017, 6, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Cicchetti, D.V.; Sparrow, S.A. Developing criteria for establishing interrater reliability of specific items: Applications to assessment of adaptive behavior. Am. J. Ment. Defic. 1981, 86, 127–137. [Google Scholar] [PubMed]
- Rankin, G.; Stokes, M. Reliability of assessment tools in rehabilitation: An illustration of appropriate statistical analyses. Clin. Rehabil. 1998, 12, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.E.; Watson, A.J.; Hoskins, P.R.; Elliott, A.T. Investigation of the effect of subcutaneous fat on image quality performance of 2D conventional imaging and tissue harmonic imaging. Ultrasound Med. Biol. 2005, 31, 957–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mast, T.D. Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. Online 2000, 1, 37. [Google Scholar] [CrossRef] [Green Version]
- Feldman, M.K.; Katyal, S.; Blackwood, M.S. US Artifacts. RadioGraphics 2009, 29, 1179–1189. [Google Scholar] [CrossRef]
- De Lédinghen, V.; Vergniol, J.; Foucher, J.; El-Hajbi, F.; Merrouche, W.; Rigalleau, V. Feasibility of liver transient elastography with FibroScan® using a new probe for obese patients. Liver Int. 2010, 30, 1043–1048. [Google Scholar] [CrossRef]
- Palmeri, M.L.; Nightingale, K.R. What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? Imaging Med. 2011, 3, 433–444. [Google Scholar] [CrossRef] [Green Version]
OE | OI | TrA | Fat | |||
---|---|---|---|---|---|---|
Shear Modulus (kPa) | Intra-rater Reliability Rater A | ICC3.1 | 0.83 | 0.71 | 0.70 | |
SDD (kPa) | 6.16 | 5.41 | 7.49 | |||
Bias 2 (kPa) | −0.96 | −0.46 | −0.12 | |||
Intra-rater reliability Rater B | ICC3.1 | 0.78 | 0.63 | 0.55 | ||
SDD (kPa) | 6.99 | 5.64 | 8.00 | |||
Bias 2 (kPa) | 0.27 | 0.23 | −0.21 | |||
Intra-rater reliability Probe compression controlled | ICC3.1 | 0.97 | 0.88 | 0.73 | ||
SDD (kPa) | 2.17 | 2.96 | 6.57 | |||
Bias 2 (kPa) | 0.21 | −0.40 | −0.88 | |||
Muscle or Fat Thickness (mm) | Intra-session reliability Rater A | ICC3.1 | 0.93 | 0.91 | 0.81 | 0.96 |
SDD (mm) | 1.36 | 1.52 | 0.71 | 1.90 | ||
Bias 2 (mm) | 0.09 | 0.09 | −0.17 1 | −0.01 | ||
Intra-session reliability Rater B | ICC3.1 | 0.92 | 0.88 | 0.70 | 0.93 | |
SDD (mm) | 1.50 | 1.69 | 0.99 | 2.42 | ||
Bias 2 (mm) | 0.17 | −0.07 | −0.18 1 | 0.07 | ||
Intra-rater reliability Probe compression controlled | ICC3.1 | 0.99 | 0.97 | 0.93 | 0.99 | |
SDD (mm) | 0.55 | 0.90 | 0.46 | 1.09 | ||
Bias 2 (mm) | −0.03 | −0.07 | 0.01 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikołajowski, G.; Pałac, M.; Wolny, T.; Linek, P. Lateral Abdominal Muscles Shear Modulus and Thickness Measurements under Controlled Ultrasound Probe Compression by External Force Sensor: A Comparison and Reliability Study. Sensors 2021, 21, 4036. https://doi.org/10.3390/s21124036
Mikołajowski G, Pałac M, Wolny T, Linek P. Lateral Abdominal Muscles Shear Modulus and Thickness Measurements under Controlled Ultrasound Probe Compression by External Force Sensor: A Comparison and Reliability Study. Sensors. 2021; 21(12):4036. https://doi.org/10.3390/s21124036
Chicago/Turabian StyleMikołajowski, Grzegorz, Małgorzata Pałac, Tomasz Wolny, and Paweł Linek. 2021. "Lateral Abdominal Muscles Shear Modulus and Thickness Measurements under Controlled Ultrasound Probe Compression by External Force Sensor: A Comparison and Reliability Study" Sensors 21, no. 12: 4036. https://doi.org/10.3390/s21124036
APA StyleMikołajowski, G., Pałac, M., Wolny, T., & Linek, P. (2021). Lateral Abdominal Muscles Shear Modulus and Thickness Measurements under Controlled Ultrasound Probe Compression by External Force Sensor: A Comparison and Reliability Study. Sensors, 21(12), 4036. https://doi.org/10.3390/s21124036