A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis
Abstract
:1. Introduction
2. Related Work
3. System Design
3.1. Hardware Design
3.2. Software Design
4. Gait Analysis
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fritz, N.E.; Cheek, F.M.; Nichols-Larsen, D.S. Motor-cognitive dual-task training in neurologic disorders: A systematic review. J. Neurol. Phys. Ther. JNPT 2015, 39, 142–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiner, M.; Wong, L.; Dubé, A.; Wnuk, K.; Hunter, S.W.; Graham, L.J. Dual-task assessment protocols in concussion assessment: A systematic literature review. J. Orthop. Sports Phys. Ther. 2018, 48, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Chou, L.S.; Kaufman, K.R.; Walker-Rabatin, A.E.; Brey, R.H.; Basford, J.R. Dynamic instability during obstacle crossing following traumatic brain injury. Gait Posture 2004, 20, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. J. Am. Med. Assoc. 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, B.A.; Brinks, J.; Sacks, R.; Trivax, J.; Friedman, H. Reduced Walking Speed and Distance as Harbingers of the Approaching Grim Reaper. Am. J. Cardiol. 2015, 116, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.K.; Soni, Y.; Dubey, S. Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), Trivandrum, India, 23–24 August 2013; pp. 298–304. [Google Scholar] [CrossRef]
- Tang, W.; Culurciello, E. A pulse-based amplifier and data converter for bio-potentials. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 337–340. [Google Scholar] [CrossRef]
- Liu, Y.; Furth, P.M.; Tang, W. Hardware-Efficient Delta Sigma-Based Digital Signal Processing Circuits for the Internet-of-Things. J. Low Power Electron. Appl. 2015, 5, 234–256. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Tang, X.; Tang, W. A Smart Chair Sitting Posture Recognition System Using Flex Sensors and FPGA Implemented Artificial Neural Network. IEEE Sens. J. 2020, 20, 8007–8016. [Google Scholar] [CrossRef]
- Hu, Q.; Tang, X.; Tang, W. A Real-Time Patient-Specific Sleeping Posture Recognition System Using Pressure Sensitive Conductive Sheet and Transfer Learning. IEEE Sens. J. 2021, 21, 6869–6879. [Google Scholar] [CrossRef]
- Tang, X.; Hu, Q.; Tang, W. Delta Sigma Encoder for Low-Power Wireless Bio-Sensors Using Ultrawideband Impulse Radio. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 747–751. [Google Scholar] [CrossRef]
- Tang, W.; Andreou, A.; Culurciello, E. A low-power silicon-on-sapphire tunable ultra-wideband transmitter. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 1974–1977. [Google Scholar] [CrossRef]
- Tang, W.; Culurciello, E. A non-coherent FSK-OOK UWB impulse radio transmitter for clock-less synchronization. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1295–1298. [Google Scholar] [CrossRef]
- Hu, Q.; Yi, C.; Kliewer, J.; Tang, W. Asynchronous communication for wireless sensors using ultra wideband impulse radio. In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Ft. Collins, CO, USA, 2–5 August 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Yep Khoo, A.C.; Ting Yap, Y.; Gouwanda, D.; Gopalai, A.A. Examination of Interlimb Coordination of Human Asymmetrical Gait. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; pp. 680–685. [Google Scholar]
- Artemiadis, P.K.; Krebs, H.I. On the interlimb coordination and synchronization during gait. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 1571–1574. [Google Scholar]
- Miller, A.; Duff, S.V.; Quinn, L.; Bishop, L.; Youdan, G.; Ruthrauff, H.; Wade, E. Development of Sensor-Based Measures of Upper Extremity Interlimb Coordination. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 3160–3164. [Google Scholar]
- Gujarathi, T.; Bhole, K. Gait analysis using imu sensor. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–5. [Google Scholar]
- Wang, L.; Sun, Y.; Li, Q.; Liu, T.; Yi, J. Two Shank-Mounted IMUs-Based Gait Analysis and Classification for Neurological Disease Patients. IEEE Robot. Autom. Lett. 2020, 5, 1970–1976. [Google Scholar] [CrossRef]
- Pérez-Ibarra, J.C.; Siqueira, A.A.G.; Krebs, H.I. Real-Time Identification of Gait Events in Impaired Subjects Using a Single-IMU Foot-Mounted Device. IEEE Sens. J. 2020, 20, 2616–2624. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- APDM, Inc. Mobility Lab Provides Sensitive, Valid and Reliable Outcome Measures; Technical Report; MobilityLab by APDM: Portland, OR, USA, 2017. [Google Scholar]
- RajKumar, A.; Vulpi, F.; Bethi, S.R.; Wazir, H.K.; Raghavan, P.; Kapila, V. Wearable Inertial Sensors for Range of Motion Assessment. IEEE Sens. J. 2020, 20, 3777–3787. [Google Scholar] [CrossRef] [PubMed]
- Ingraham, K.A.; Ferris, D.P.; Remy, C.D. Using portable physiological sensors to estimate energy cost for ‘body-in-the-loop’ optimization of assistive robotic devices. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 413–417. [Google Scholar] [CrossRef]
- Beange, K.H.E.; Chan, A.D.C.; Graham, R.B. Evaluation of wearable IMU performance for orientation estimation and motion tracking. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Xsense. Refreshed Pricing Model for Xsens’ Motion Capture Solution. 2020. Available online: https://www.xsens.com/news/xsens-motion-capture-pricing (accessed on 10 June 2021).
- Kitagawa, M. Walking on Graphs. Available online: https://www.utdallas.edu/atec/midori/Handouts/walkingGraphs.htm (accessed on 28 November 2019).
- Pasko, A.; Chen, P.Z.; Li, J.; Luo, M.; Zhu, N.H. Real-Time Human Motion Capture Driven by a Wireless Sensor Network. Int. J. Comput. Games Technol. 2015, 2015, 695874. [Google Scholar] [CrossRef]
Parameter | Sys. Calculated | Known Value |
---|---|---|
Stride Length | 101 cm | 120 cm |
Gait speed | 44 m/min | 50 m/min |
Cadence | 73.7 steps/min | 80 steps/min |
Double support | 0.84 | 0.80 |
Swing Phase (L) | 0.34 | 0.40 |
Swing Phase (R) | 0.38 | 0.40 |
This Work | [28] | [23] | [22] | |
---|---|---|---|---|
2015 | 2020 | 2017 | ||
Target Application | Whole body motion capture | Whole body motion capture | Motion capture of upper extremity | Whole body motion capture |
Number of Sensors | 10 IMU Full Body | N/A | 5 Upper Body Only | 6 IMU Full Body |
Inter Limb Coordination | Yes | Yes | No | No |
Sampling Frequency or Processing Time | 59 Hz Real-Time | N/A | 92.5 s Computing time | N/A |
3D Human Model | Yes | Yes | No | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Tang, W. A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis. Sensors 2021, 21, 4051. https://doi.org/10.3390/s21124051
Lee K, Tang W. A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis. Sensors. 2021; 21(12):4051. https://doi.org/10.3390/s21124051
Chicago/Turabian StyleLee, Kevin, and Wei Tang. 2021. "A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis" Sensors 21, no. 12: 4051. https://doi.org/10.3390/s21124051
APA StyleLee, K., & Tang, W. (2021). A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis. Sensors, 21(12), 4051. https://doi.org/10.3390/s21124051