Roadmap of Terahertz Imaging 2021
Abstract
:1. Introduction
2. Compact Solutions in THz Emitters
2.1. Fiber Femtosecond Laser-Based THz Sources
2.2. THz Quantum Cascade Lasers
2.3. High Electron Mobility Transistor-Based Sources
2.4. Silicon Nanotransistor-Based Sources
2.5. Resonant Tunneling Diodes
2.6. Vacuum Electronics
3. THz Room Temperature Detectors and Arrays
3.1. Field Effect Transistor-Based Detectors
3.2. THz Diodes-Based Sensing and Microbolometers in THz Imaging
4. Diffractive Optical Components and Beamforming (Beam Engineering) in THz Imaging
5. Spatial Filtering Methods in THz Imaging
6. On-Chip Solutions in THz Imaging
7. THz Computational Imaging
8. THz Nanoimaging and Nanoscopy
9. Advanced Specialized THz Imaging Techniques
9.1. THz Light-Field Imaging Technique
9.2. Homodyne Spectroscopy and Phase Sensitive Interferometry
9.3. Room Temperature THz Comb Spectroscopy
9.4. THz MCW Imaging
9.5. Passive THz Imaging
- True real-time operation of security scanners was reached with passive imagers based on superconducting microbolometers. A system based on Nb transition-edge sensors (NEP on the order of 10 W/Hz) was introduced by the Institute of Photonic Technologies, Jena [400]. In its final form, it had a 128-detector array and a main mirror with a diameter of 1 m, with the optical system designed for object distances of 15–20 m and image recording at a frame rate of 25 Hz with a NETD of 0.4 K [401]. The detectors were cooled to less than 1 K with a closed-cycle cooling unit. The system detected in a frequency band of 40–125 GHz around a center frequency of 350 GHz which was found to offer the best compromise between spatial resolution and fabric/clothes penetration [402]. It appears that system development is now being continued by Supracon AG. Another imaging system based on a superconducting Nb or NbN microbolometer arrays (64 elements), cooled to 4 K and operating at a scan rate of 5 fps with a NETD of about 2 K at a pixel integration time of 30 ms, was introduced by NIST (Boulder, CO, USA) in cooperation with VTT (Espoo, Finland) [403,404].
- Semiconductor bolometers: A much-used type of bolometer is the cryogenically cooled Si bolometer [399]. An extreme example is the He-cooled Si bolometer addressed in Reference [391]. It reached an NEP of 2 fW/Hz, covering the frequency range 0.2–1.0 THz. Recent years have seen the development of devices for operation at room temperature, based on related advances of IR detectors. References [405,406] report about a membrane-mounted, antenna-coupled Si MOSFET bolometer which was fabricated by silicon-on-insulator micromachining techniques. An optical NEP of 7.8 pW/Hz and a NETD of 1.25 K for a 1-Hz effective noise bandwidth were measured. An array of similar passive Si MOSFET detectors for room-temperature operation was described in [407,408]. The detectors covered the 0.6–1.2 THz band. An optical NEP of 25 pW/Hz was reached.
- Another important line of development for passive detection began, when the group of Qing Hu at the MIT reported in 2005 that microbolometer arrays, developed for room-temperature operation in the long-wavelength infrared (wavelength region: 7.5–14 µm), are sensitive enough to be useful for operation with QCLs emitting at 2.52 THz [184]. Cameras based on such arrays are commercially available, with a typical specification of the optical NEP of 0.9 pW/Hz at their design wavelength. The arrays contain 2 × 10–3 × 10 detector elements, each consisting of a free-standing silicon nitride membrane with a vanadium oxide or other absorber, and a Si CMOS read-out [184]. The optical NEP at 4.3 THz was found to be 320 pW/Hz [185], good enough to achieve >25 m stand-off imaging at the atmospheric window at 4.9 µm when measurements were performed with a powerful QCL radiation source [409]. Similar results were obtained at NEC, Japan, with their IR microbolometer cameras [410,411]. NEC introduced modifications to the camera system, replacing the camera window material and modifying the detector elements by adding absorber wings resonant at 3 THz [410,411]. This improved the NEP by a factor of 5–7, with an additional increase by pixel binning. LETI, Laboratoire d’Electronique, de Technologie et d’Instrumentation, of France, made even more rigorous changes to their IR microbolometer cameras and redesigned them for THz frequencies by the introduction of a bow-tie antenna and cavity [412].
- Superconducting systems have seen the development of arrays based on kinetic-inductance detectors. Two of their advantages are that they allow relatively easy up-scaling of the number of detector elements to form large arrays, and that operation of the NbN sensor elements is possible at somewhat elevated temperature—5–10 K—compared to transition edge bolometers. Ref. [414] reports development of such superconducting detector arrays for two frequency bands (0.1–0.45 THz and 0.45–0.625 THz). An unprecedentedly large number of 8208 membrane-mounted detectors was implemented on six tiles, forming an exceptionally large focal plane array with a diameter of 24 cm. A NETD of less than 0.2 K (with NEP values of the detectors on the order of 20 fW/Hz ) is reported.A prototype of a security scanner, also based on kinetic inductance detectors, was recently introduced in Reference [415]. It has no mechanical scanning unit, but uses its 8712 detectors in a 20 × 10 cm array in “full-staring” mode. NETD values of less than 0.15 K/Hz are reported (detector NEP: 14 fW/Hz, detection up to 1 THz). The detectors were cooled to 5.8 K. Images were taken at 9 fps.
- Photoelectric rectifiers: The design of a 12-pixel array of Schottky diodes with differential read-out was introduced in Reference [416]. It is to capture blackbody radiation from 0.2 to 0.6 THz, and the pixels are predicted to have a NEP of 0.9 pW/Hz and a sub-K temperature sensitivity.Direct power detection by distributive resistive mixing in antenna-coupled FETs was tested in several papers with regard to passive detection and imaging. Ref. [417] reported imaging with a 32 × 32 pixel Si MOSFET array and obtained a NETD of 21 K upon integration over 5.7 min at 30 fps. With antenna-coupled AlGaN/GaN HEMTs, cooled to 77 K and covering the band 0.7–0.9 THz, an NETD of 370 mK (0.2 s integration time) was obtained [235,418]. With an optical NEP on the order of 1 pW/Hz , the sensitivity was comparable with that of Si bolometers at 4 K. This allowed taking single-detector raster scan images, with a time of 20 min required for the acquisition of 5000-pixel images. Finally, Figure 8 displays an example of a raster scan image of the fingers of a human hand taken with a single antenna-coupled Si MOSFET held at room temperature [419]. The predicted (measured) NETD was 2.2 K (4.4 K) for a 1 Hz effective noise bandwidth (optical NEP of the detector: 42 pW/). The temperature difference between the fingers and the ambient was 8.7 K, recording of the image took 30 min. The detailed analysis of these and related measurements confirmed that an improved detection of “grey”-body radiation can be obtained if the detector’s bandwidth is enlarged, and not if the corner frequency is shifted to higher values for a fixed bandwidth.
- Microbolometer arrays: The adaption of uncooled microbolometer arrays to THz frequency by the optimization of the cavity structures and antennas, respectively, metamaterial absorbers, as well as the read-out, continued to improve the sensitivity to a level that the cameras can be employed for passive imaging [420,421,422,423,424], albeit with a minimum detectable power of about 10 pW at 2.5 THz and a frame rate of 8 Hz [424] not for real-time passive imaging of the human body. Several companies are now on the market offering THz microbolometer cameras, for a list see Ref. [423].
10. Artificial Intelligence in THz Imaging
11. Summary, Systems Integration, and Possible Extrapolations in THz Imaging
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
THz | Terahertz |
THz TDS | Terahertz Time-domain Spectroscopy |
MBE | Molecular Beam Epitaxy |
SNR | Signal-to-Noise-Ratio |
QCL | Quantum Cascade Lasers |
RTDs | Resonant Tunneling Diodes |
HEMT | High Electron Mobility Transistor |
HBT | Heterojunction Bipolar Transistor |
FET | Field Effect Transistor |
HFET | Heterojunction Field Effect Transistor |
CMOS | Complementary Metal Oxide Semiconductor |
NEP | Noise Equivalent Power |
MEMS | Microelectromechanical System |
MMIC | Monolithic Microwave Integrated Circuit |
TMIC | Terahertz Monolithic Integrated Circuits |
CI | Computational Imaging |
AI | Artificial Intelligence |
DL | Deep Learning |
References
- Hartwick, T.S.; Hodges, D.T.; Barker, D.H.; Foote, F.B. Far infrared imagery. Appl. Opt. 1976, 15, 1919. [Google Scholar] [CrossRef]
- Hu, B.B.; Nuss, M.C. Imaging with terahertz waves. Opt. Lett. 1995, 20, 1716. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.; Deibel, J.; Mittleman, D.M. Imaging with terahertz radiation. Rep. Prog. Phys. 2007, 70, 1325–1379. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging-Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Mittleman, D.M. Twenty years of terahertz imaging [Invited]. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Kawase, K.; Shibuya, T.; Hayashi, S.; Suizu, K. Techniques d’imagerie térahertz pour l’analyse industrielle non destructive. Comptes Rendus Phys. 2010, 11, 510–518. [Google Scholar] [CrossRef]
- Son, J.H. Principle and applications of terahertz molecular imaging. Nanotechnology 2013, 24, 214001. [Google Scholar] [CrossRef] [PubMed]
- D’Arco, A.; Fabrizio, M.D.; Dolci, V.; Marcelli, A.; Petrarca, M.; Ventura, G.D.; Lupi, S. Characterization of volatile organic compounds (VOCs) in their liquid-phase by terahertz time-domain spectroscopy. Biomed. Opt. Express 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Sfarra, S.; Osman, A.; Szielasko, K.; Stumm, C.; Genest, M.; Maldague, X.P. An Infrared-Induced Terahertz Imaging Modality for Foreign Object Detection in a Lightweight Honeycomb Composite Structure. IEEE Trans. Ind. Inform. 2018, 14, 5629–5636. [Google Scholar] [CrossRef] [Green Version]
- Chulkov, A.O.; Sfarra, S.; Zhang, H.; Osman, A.; Szielasko, K.; Stumm, C.; Sarasini, F.; Fiorelli, J.; Maldague, X.P.; Vavilov, V.P. Evaluating thermal properties of sugarcane bagasse-based composites by using active infrared thermography and terahertz imaging. Infrared Phys. Technol. 2019, 97, 432–439. [Google Scholar] [CrossRef]
- Bendada, A.; Sfarra, S.; Ibarra-Castanedo, C.; Akhloufi, M.; Caumes, J.P.; Pradere, C.; Batsale, J.C.; Maldague, X. Subsurface imaging for panel paintings inspection: A comparative study of the ultraviolet, the visible, the Infrared and the terahertz spectra. Opto-Electron. Rev. 2015, 23, 88–99. [Google Scholar] [CrossRef]
- Zhang, H.; Sfarra, S.; Saluja, K.; Peeters, J.; Fleuret, J.; Duan, Y.; Fernandes, H.; Avdelidis, N.; Ibarra-Castanedo, C.; Maldague, X. Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography. J. Nondestruct. Eval. 2017, 36, 34. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Son, J.H.; Oh, S.J.; Cheon, H. Potential clinical applications of terahertz radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz pulsed imaging in biomedical applications. Condens. Matter 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Neu, J.; Schmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef] [Green Version]
- Krotkus, A. Semiconductors for terahertz photonics applications. J. Phys. Appl. Phys. 2010, 43, 273001. [Google Scholar] [CrossRef] [Green Version]
- Hebling, J.; Almasi, G.; Kozma, I.; Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 2002, 10, 1161. [Google Scholar] [CrossRef] [Green Version]
- Yeh, K.L.; Hebling, J.; Hoffmann, M.C.; Nelson, K.A. Generation of high average power 1 kHz shaped THz pulses via optical rectification. Opt. Commun. 2008, 281, 3567–3570. [Google Scholar] [CrossRef]
- Vicario, C.; Jazbinsek, M.; Ovchinnikov, A.V.; Chefonov, O.V.; Ashitkov, S.I.; Agranat, M.B.; Hauri, C.P. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt. Express 2015, 23, 4573. [Google Scholar] [CrossRef] [Green Version]
- Jazbinsek, M.; Puc, U.; Abina, A.; Zidansek, A. Organic crystals for THz photonics. Appl. Sci. 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Lee, S.H.; Li, X.; Lee, S.C.; Han, J.H.; Kown, O.P.; Nelson, K.A. Efficient terahertz generation in highly nonlinear organic crystal HMB-TMS. Opt. Express 2018, 26, 30786. [Google Scholar] [CrossRef] [Green Version]
- Curcio, A.; Petrarca, M. Saturation regime of THz generation in nonlinear crystals by pumps with arbitrary spectral modulations. Opt. Lett. 2020, 45, 1619–1622. [Google Scholar] [CrossRef] [PubMed]
- D’Arco, A.; Tomarchio, L.; Dolci, V.; Di Pietro, P.; Perucchi, A.; Mou, S.; Petrarca, M.; Lupi, S. Broadband anisotropic optical properties of the terahertz generator HMQ-TMS organic crystal. Condens. Matter 2020, 5, 47. [Google Scholar] [CrossRef]
- Kress, M.; Löffler, T.; Eden, S.; Thomson, M.; Roskos, H.G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett. 2004, 29, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xu, J.; Dai, J.; Zhang, X.C. Enhancement of terahertz wave generation from laser induced plasma. Appl. Phys. Lett. 2007, 90, 141104. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.; González De Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L. Broadband terahertz radiation from two-color mid- and far-infrared laser filaments in air. Phys. Rev. 2018, 97, 063839. [Google Scholar] [CrossRef] [Green Version]
- Thiele, I.; Zhou, B.; Nguyen, A.; Smetanina, E.; Nuter, R.; Kaltenecker, K.J.; González de Alaiza Martínez, P.; Déchard, J.; Bergé, L.; Jepsen, P.U.; et al. Terahertz emission from laser-driven gas plasmas: A plasmonic point of view. Optica 2018, 5, 1617–1622. [Google Scholar] [CrossRef]
- Roehle, H.; Dietz, R.J.B.; Hensel, H.J.; Böttcher, J.; Künzel, H.; Stanze, D.; Schell, M.; Sartorius, B. Next generation 1.5 µm terahertz antennas: Mesa-structuring of InGaAs/InAlAs photoconductive layers. Opt. Express 2010, 18, 2296–2301. [Google Scholar] [CrossRef]
- Sartorius, B.; Stanze, D.; Göbel, T.; Schmidt, D.; Schell, M. Continuous wave terahertz systems based on 1.5 µm telecom technologies. J. Infrared Millim. Terahertz Waves 2012, 33, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Dietz, R.J.; Brahm, A.; Velauthapillai, A.; Wilms, A.; Lammers, C.; Globisch, B.; Koch, M.; Notni, G.; Tünnermann, A.; Göbel, T.; et al. Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation. J. Infrared Millim. Terahertz Waves 2015, 36, 60–71. [Google Scholar] [CrossRef]
- Pačebutas, V.; Bičiūnas, A.; Bertulis, K.; Krotkus, A. Optoelectronic terahertz radiation system based on femtosecond 1 µm laser pulses and GaBiAs detector. Electron. Lett. 2008, 44, 1154–1155. [Google Scholar] [CrossRef]
- Pačebutas, V.; Bičiũnas, A.; Balakauskas, S.; Krotkus, A.; Andriukaitis, G.; Lorenc, D.; Pugžlys, A.; Baltuška, A. Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components. Appl. Phys. Lett. 2010, 97, 031111. [Google Scholar] [CrossRef]
- Urbanowicz, A.; Pačebutas, V.; Geižutis, A.; Stanionyte, S.; Krotkus, A. Terahertz time-domain-spectroscopy system based on 1.55 m fiber laser and photoconductive antennas from dilute bismides. AIP Adv. 2016, 6, 025218. [Google Scholar] [CrossRef] [Green Version]
- Kohlhaas, R.B.; Breuer, S.; Liebermeister, L.; Nellen, S.; Deumer, M.; Schell, M.; Semtsiv, M.P.; Masselink, W.T.; Globisch, B. 637 µW emitted terahertz power from photoconductive antennas based on rhodium doped InGaAs. Appl. Phys. Lett. 2020, 117, 131105. [Google Scholar] [CrossRef]
- Samizadeh Nikoo, M.; Jafari, A.; Perera, N.; Zhu, M.; Santoruvo, G.; Matioli, E. Nanoplasma-enabled picosecond switches for ultrafast electronics. Nature 2020, 579, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Pačebutas, V.; Stanionyte, S.; Norkus, R.; Bičiunas, A.; Urbanowicz, A.; Krotkus, A. Terahertz pulse emission from GaInAsBi. J. Appl. Phys. 2019, 125, 174507. [Google Scholar] [CrossRef]
- Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Ritchie, D.A.; Iotti, R.C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photonics 2007, 1, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Vitiello, M.S.; Scalari, G.; Williams, B.; De Natale, P. Quantum cascade lasers: 20 years of challenges. Opt. Express 2015, 23, 5167–5182. [Google Scholar] [CrossRef]
- Liang, G.; Liu, T.; Wang, Q.J. Recent Developments of Terahertz Quantum Cascade Lasers. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1200118. [Google Scholar] [CrossRef]
- Belkin, M.A.; Capasso, F. New frontiers in quantum cascade lasers: High performance room temperature terahertz sources. Phys. Scr. 2015, 90, 118002. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Zhu, J.; Freeman, J.; Dean, P.; Valavanis, A.; Davies, A.G.; Linfield, E.H. Terahertz quantum cascade lasers with >1 W output powers. Electron. Lett. 2014, 50, 309–311. [Google Scholar] [CrossRef] [Green Version]
- Curwen, C.A.; Reno, J.L.; Williams, B.S. Terahertz quantum cascade VECSEL with watt-level output power. Appl. Phys. Lett. 2018, 113, 011104. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Reno, J.L.; Kumar, S. Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode. Optica 2020, 7, 708–715. [Google Scholar] [CrossRef]
- Bosco, L.; Franckié, M.; Scalari, G.; Beck, M.; Wacker, A.; Faist, J. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 2019, 115, 010601. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-power portable terahertz laser systems. Nat. Photonics 2020, 14, 3003–3005. [Google Scholar] [CrossRef]
- Belkin, M.A.; Capasso, F.; Belyanin, A.; Sivco, D.L.; Cho, A.Y.; Oakley, D.C.; Vineis, C.J.; Turner, G.W. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photonics 2007, 1, 288–292. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Razeghi, M. Widely tunable room temperature semiconductor terahertz source. Appl. Phys. Lett. 2014, 105, 201102. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Bandyopadhyay, N.; Slivken, S.; Bai, Y.; Razeghi, M. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl. Phys. Lett. 2014, 104, 221105. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, S.; Jiang, Y.; Fujita, K.; Hitaka, M.; Ito, A.; Edamura, T.; Belkin, M.A. Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers. Appl. Phys. Lett. 2018, 113, 161102. [Google Scholar] [CrossRef] [Green Version]
- Amanti, M.I.; Fischer, M.; Scalari, G.; Beck, M.; Faist, J. Low-divergence single-mode terahertz quantum cascade laser. Nat. Photonics 2009, 3, 586–590. [Google Scholar] [CrossRef]
- Curwen, C.A.; Reno, J.L.; Williams, B.S. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL. Nat. Photonics 2019, 13, 855–859. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Feng, Y.; Lv, X.; Ji, D.; Niu, Z.; Yang, Y.; Zhao, X.; Fan, Y. Development of 340-GHz transceiver front end based on gaas monolithic integration technology for THz active imaging array. Appl. Sci. 2020, 10, 7924. [Google Scholar] [CrossRef]
- Qi, L.W.; Meng, J.; Liu, X.Y.; Weng, Y.; Liu, Z.C.; Zhang, D.H.; Zhou, J.T.; Jin, Z. Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz schottky barrier varactor. Chin. Phys. B 2020, 29, 104212. [Google Scholar] [CrossRef]
- Seok, E.; Cao, C.; Shim, D.; Arenas, D.J.; Tanner, D.B.; Hung, C.; Kenneth, K.O. A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; pp. 472–629. [Google Scholar] [CrossRef]
- Huang, D.; LaRocca, T.R.; Chang, M.F.; Samoska, L.; Fung, A.; Campbell, R.L.; Andrews, M. Terahertz CMOS Frequency Generator Using Linear Superposition Technique. IEEE J. Solid-State Circuits 2008, 43, 2730–2738. [Google Scholar] [CrossRef]
- Pfeiffer, U.R.; Öjefors, E.; Lisauskas, A.; Roskos, H.G. Opportunities for silicon at mmWave and Terahertz frequencies (invited). Proc. IEEE Bipolar/Bicmos Circuits Technol. Meet. 2008, 149–156. [Google Scholar] [CrossRef]
- Razavi, B. A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J. Solid-State Circuits 2011, 46, 894–903. [Google Scholar] [CrossRef]
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U.R. Terahertz Imaging and Sensing Applications With Silicon-Based Technologies. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Heinemann, B.; Barth, R.; Bolze, D.; Drews, J.; Fischer, G.; Fox, A.; Fursenko, O.; Grabolla, T.; Haak, U.; Knoll, D.; et al. SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010. [Google Scholar] [CrossRef]
- Seo, M.; Urteaga, M.; Hacker, J.; Young, A.; Griffith, Z.; Jain, V.; Pierson, R.; Rowell, P.; Skalare, A.; Peralta, A.; et al. InP HBT IC technology for terahertz frequencies: Fundamental oscillators Up to 0.57 THz. IEEE J. Solid-State Circuits 2011, 46, 2203–2214. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, J.; Kim, J.; Choe, W. H-band INP HBT frequency tripler using the triple-push technique. Electronics 2020, 9, 2081. [Google Scholar] [CrossRef]
- Klappenberger, F.; Renk, K.F.; Renk, P.; Rieder, B.; Koshurinov, Y.I.; Pavelev, D.G.; Ustinov, V.; Zhukov, A.; Maleev, N.; Vasilyev, A. Semiconductor-superlattice frequency multiplier for generation of submillimeter waves. Appl. Phys. Lett. 2004, 84, 3924–3926. [Google Scholar] [CrossRef]
- Endres, C.P.; Lewen, F.; Giesen, T.F.; Schlemmer, S.; Paveliev, D.G.; Koschurinov, Y.I.; Ustinov, V.M.; Zhucov, A.E. Application of superlattice multipliers for high-resolution terahertz spectroscopy. Rev. Sci. Instrum. 2007, 78, 043106. [Google Scholar] [CrossRef] [PubMed]
- Dyukov, D.I.; Fefelov, A.G.; Korotkov, A.V.; Pavelyev, D.G.; Kozlov, V.A.; Obolenskaya, E.S.; Ivanov, A.S.; Obolensky, S.V. Comparison of the Efficiency of Promising Heterostructure Frequency-Multiplier Diodes of the THz-Frequency Range. Semiconductors 2020, 54, 1360–1364. [Google Scholar] [CrossRef]
- Knap, W.; Lusakowski, J.; Parenty, T.; Bollaert, S.; Cappy, A.; Popov, V.V.; Shur, M.S. Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 2004, 84, 2331–2333. [Google Scholar] [CrossRef] [Green Version]
- Dyakonova, N.; El Fatimy, A.; Łusakowski, J.; Knap, W.; Dyakonov, M.I.; Poisson, M.A.; Morvan, E.; Bollaert, S.; Shchepetov, A.; Roelens, Y.; et al. Room-temperature terahertz emission from nanometer field-effect transistors. Appl. Phys. Lett. 2006, 88, 141906. [Google Scholar] [CrossRef]
- El Fatimy, A.; Dyakonova, N.; Meziani, Y.; Otsuji, T.; Knap, W.; Vandenbrouk, S.; Madjour, K.; Théron, D.; Gaquiere, C.; Poisson, M.A.; et al. AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources. J. Appl. Phys. 2010, 107, 024504. [Google Scholar] [CrossRef] [Green Version]
- Knap, W.; Nadar, S.; Videlier, H.; Boubanga-Tombet, S.; Coquillat, D.; Dyakonova, N.; Teppe, F.; Karpierz, K.; Łusakowski, J.; Sakowicz, M.; et al. Field effect transistors for terahertz detection and emission. J. Infrared Millim. Terahertz Waves 2011, 32, 618–628. [Google Scholar] [CrossRef]
- Onishi, T.; Tanigawa, T.; Takigawa, S. High power terahertz emission from a single gate AlGaN/GaN field effect transistor with periodic Ohmic contacts for plasmon coupling. Appl. Phys. Lett. 2010, 97, 092117. [Google Scholar] [CrossRef]
- Božanić, M.; Sinha, S. Emerging Transistor Technologies Capable of Terahertz Amplification: A Way to Re-Engineer Terahertz Radar Sensors. Sensors 2019, 19, 2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urteaga, M.; Griffith, Z.; Seo, M.; Hacker, J.; Rodwell, M.J.W. InP HBT Technologies for THz Integrated Circuits. Proc. IEEE 2017, 105, 1051–1067. [Google Scholar] [CrossRef]
- Lai, R.; Mei, X.B.; Deal, W.R.; Yoshida, W.; Kim, Y.M.; Liu, P.H.; Lee, J.; Uyeda, J.; Radisic, V.; Lange, M. Sub 50 nm InP HEMT device with fmax greater than 1 THz. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 609–611. [Google Scholar]
- Leuther, A.; Tessmann, A.; Doria, P.; Ohlrogge, M.; Seelmann-Eggebert, M.; Masler, H.; Schlechtweg, M.; Ambacher, O. 20 nm Metamorphic HEMT technology for terahertz monolithic integrated circuits. In Proceedings of the 2014 9th European Microwave Integrated Circuit Conference, Rome, Italy, 6–7 October 2014; pp. 84–87. [Google Scholar] [CrossRef]
- Takahashi, T.; Kawano, Y.; Makiyama, K.; Shiba, S.; Sato, M.; Nakasha, Y.; Hara, N. Maximum frequency of oscillation of 1.3 THz obtained by using an extended drain-side recess structure in 75-nm-gate InAlAs/InGaAs high-electron-mobility transistors. Appl. Phys. Express 2017, 10, 024102. [Google Scholar] [CrossRef]
- Grotsch, C.M.; Mabler, H.; Leuther, A.; Kallfass, I. An Active Multiplier-by-Six S-MMIC for 500 GHz. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and TerahertzWaves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Zamora, A.; Leong, K.M.K.H.; Mei, G.; Lange, M.; Yoshida, W.; Nguyen, K.T.; Gorospe, B.S.; Deal, W.R. A high efficiency 670 GHz x36 InP HEMT multiplier chain. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 977–979. [Google Scholar] [CrossRef]
- Weber, R.; Tessmann, A.; Massler, H.; Leuther, A.; Lewark, U.J. 600 GHz resistive mixer S-MMICs with integrated multiplier-by-six in 35 nm mHEMT technology. In Proceedings of the 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October 2016; pp. 85–88. [Google Scholar] [CrossRef]
- Deal, W.R.; Leong, K.; Radisic, V.; Sarkozy, S.; Gorospe, B.; Lee, J.; Liu, P.H.; Yoshida, W.; Zhou, J.; Lange, M.; et al. Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 368–370. [Google Scholar] [CrossRef]
- Seo, M.; Urteaga, M.; Hacker, J.; Young, A.; Skalare, A.; Lin, R.; Rodwell, M. A 600 GHz InP HBT amplifier using cross-coupled feedback stabilization and dual-Differential Power Combining. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Tessmann, A.; Leuther, A.; Massler, H.; Hurm, V.; Kuri, M.; Zink, M.; Riessle, M.; Stulz, H.P.; Schlechtweg, M.; Ambacher, O. A 600 GHz low-noise amplifier module. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Leong, K.M.K.H.; Mei, X.; Yoshida, W.H.; Zamora, A.; Padilla, J.G.; Gorospe, B.S.; Nguyen, K.; Deal, W.R. 850 GHz Receiver and Transmitter Front-Ends Using InP HEMT. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 466–475. [Google Scholar] [CrossRef]
- Mei, X.; Yoshida, W.; Lange, M.; Lee, J.; Zhou, J.; Liu, P.H.; Leong, K.; Zamora, A.; Padilla, J.; Sarkozy, S.; et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process. IEEE Electron Device Lett. 2015, 36, 327–329. [Google Scholar] [CrossRef]
- Mehdi, I.; Siles, J.V.; Lee, C.; Schlecht, E. THz Diode Technology: Status, Prospects, and Applications. Proc. IEEE 2017, 105, 990–1007. [Google Scholar] [CrossRef]
- Del Alamo, J.A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef]
- Schmid, R.L.; Ulusoy, A.C.; Zeinolabedinzadeh, S.; Cressler, J.D. A Comparison of the Degradation in RF Performance Due to Device Interconnects in Advanced SiGe HBT and CMOS Technologies. IEEE Trans. Electron Devices 2015, 62, 1803–1810. [Google Scholar] [CrossRef]
- Seok, E.; Shim, D.; Mao, C.; Han, R.; Sankaran, S.; Cao, C.; Knap, W.; Kenneth, K.O. Progress and Challenges Towards Terahertz CMOS Integrated Circuits. IEEE J. Solid-State Circuits 2010, 45, 1554–1564. [Google Scholar] [CrossRef]
- Momeni, O.; Afshari, E. High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach. IEEE J. Solid-State Circuits 2011, 46, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Tousi, Y.M.; Momeni, O.; Afshari, E. A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation. IEEE J. Solid-State Circuits 2012, 47, 3032–3042. [Google Scholar] [CrossRef]
- Grzyb, J.; Zhao, Y.; Pfeiffer, U.R. A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology. IEEE J. Solid-State Circuits 2013, 48, 1751–1761. [Google Scholar] [CrossRef]
- Khamaisi, B.; Jameson, S.; Socher, E. A 210–227 GHz Transmitter With Integrated On-Chip Antenna in 90 nm CMOS Technology. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 141–150. [Google Scholar] [CrossRef]
- Jameson, S.; Socher, E. High Efficiency 293 GHz Radiating Source in 65 nm CMOS. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 463–465. [Google Scholar] [CrossRef]
- Khamaisi, B.; Jameson, S.; Socher, E. 0.61THz radiating source with on-chip antenna on 65nm CMOS. In Proceedings of the 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October 2016; pp. 389–392. [Google Scholar]
- Buadana, N.; Jameson, S.; Socher, E. A 280GHz +9dBm TRP Dense 2D Multi Port Radiator in 65 nm CMOS. In Proceedings of the 2018 Radio Frequency Integrated Circuits Symposium, Philadelphia, PA, USA, 10–12 June 2018; p. 4. [Google Scholar]
- Schmalz, K.; Wang, R.; Borngraber, J.; Debski, W.; Winkler, W.; Meliani, C. 245 GHz SiGe transmitter with integrated antenna and external PLL. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Hillger, P.; Grzyb, J.; Malz, S.; Heinemann, B.; Pfeiffer, U. A lens-integrated 430 GHz SiGe HBT source with up to −6.3 dBm radiated power. In Proceedings of the 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, USA, 4–6 June 2017; pp. 160–163. [Google Scholar] [CrossRef]
- Jain, R.; Hillger, P.; Ashna, E.; Grzyb, J.; Pfeiffer, U.R. A 64-Pixel 0.42-THz Source SoC with Spatial Modulation Diversity for Computational Imaging. IEEE J. Solid-State Circuits 2020, 55, 3281–3293. [Google Scholar] [CrossRef]
- Hu, Z.; Kaynak, M.; Han, R. High-Power Radiation at 1 THz in Silicon: A Fully Scalable Array Using a Multi-Functional Radiating Mesh Structure. IEEE J. Solid-State Circuits 2018, 53, 1313–1327. [Google Scholar] [CrossRef]
- Tousi, Y.; Afshari, E. 14.6 A scalable THz 2D phased array with 17dBm of EIRP at 338GHz in 65nm bulk CMOS. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 258–259. [Google Scholar]
- Zhao, Y.; Chen, Z.Z.; Du, Y.; Li, Y.; Al Hadi, R.; Virbila, G.; Xu, Y.; Kim, Y.; Tang, A.; Reck, T.J.; et al. A 0.56 THz Phase-Locked Frequency Synthesizer in 65 nm CMOS Technology. IEEE J. Solid-State Circuits 2016, 51, 3005–3019. [Google Scholar] [CrossRef]
- Momeni, O.; Afshari, E. A 220-to-275GHz traveling-wave frequency doubler with 6.6dBm Power at 244GHz in 65nm CMOS. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 286–288. [Google Scholar]
- Han, R.; Zhang, Y.; Kim, Y.; Kim, D.Y.; Shichijo, H.; Afshari, E.; O, K.K. Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel. IEEE J. Solid-State Circuits 2013, 48, 2296–2308. [Google Scholar] [CrossRef]
- Vu, T.A.; Takano, K.; Fujishima, M. 300-GHz Balanced Varactor Doubler in Silicon CMOS for Ultrahigh-Speed Wireless Communications. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 341–343. [Google Scholar] [CrossRef]
- Han, R.; Afshari, E. A High-Power Broadband Passive Terahertz Frequency Doubler in CMOS. IEEE Trans. Microw. Theory Tech. 2013, 61, 1150–1160. [Google Scholar] [CrossRef]
- Ahmad, Z.; Kim, I.; Kenneth, K.O. 0.45THz symmetric MOS-varactor frequency tripler in 65-nm CMOS. In Proceedings of the 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, USA, 17–19 May 2015; pp. 275–278. [Google Scholar]
- Ahmad, Z.; Lee, M.; Kenneth, K.O. 1.4 THz, 13dBm-EIRP frequency multiplier chain using symmetric-and asymmetric-CV varactors in 65nm CMOS. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 350–351. [Google Scholar]
- Schroter, M.; Rosenbaum, T.; Chevalier, P.; Heinemann, B.; Voinigescu, S.P.; Preisler, E.; Bock, J.; Mukherjee, A. SiGe HBT Technology: Future Trends and TCAD-Based Roadmap. Proc. IEEE 2017, 105, 1068–1086. [Google Scholar] [CrossRef]
- Lisauskas, A.; Boppel, S.; Mundt, M.; Krozer, V.; Roskos, H.G. Subharmonic Mixing With Field-Effect Transistors: Theory and Experiment at 639 GHz High Above fT. IEEE Sens. J. 2013, 13, 124–132. [Google Scholar] [CrossRef]
- Brown, E.R.; Sollner, T.C.L.G.; Parker, C.D.; Goodhue, W.D.; Chen, C.L. Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl. Phys. Lett. 1989, 55, 1777–1779. [Google Scholar] [CrossRef]
- Brown, E.R.; Soderstrom, J.R.; Parker, C.D.; Mahoney, L.J.; Molvar, K.M.; McGill, T.C. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 1991, 58, 2291–2293. [Google Scholar] [CrossRef] [Green Version]
- Rodwell, M.J.W.; Allen, S.T.; Yu, R.Y.; Case, M.G.; Bhattacharya, U.; Reddy, M.; Cadman, E.; Kamegawa, M.; Konishi, Y.; Pusl, J.; et al. Active and nonlinear-wave propagation devices in ultrafast electronics and optoelectronics. Proc. IEEE 1994, 82, 1037–1059. [Google Scholar] [CrossRef]
- Feiginov, M. Frequency limitations of resonant-tunnelling diodes in sub-THz and THz oscillators and detectors. Int. J. Infrared Millim. Waves 2019, 40, 365–394. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Asada, M.; Teranishi, A.; Sugiyama, H.; Yokoyama, H. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 2010, 97, 242102. [Google Scholar] [CrossRef]
- Feiginov, M.; Sydlo, C.; Cojocari, O.; Meissner, P. Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 2011, 99, 243509. [Google Scholar] [CrossRef]
- Feiginov, M. Displacement currents and the real part of high-frequency conductance of the resonant-tunneling diode. Appl. Phys. Lett. 2001, 78, 3301–3303. [Google Scholar] [CrossRef]
- Feiginov, M.; Kanaya, H.; Suzuki, S.; Asada, M. Operation of resonant-tunneling diodes with strong back injection from the collector at frequencies up to 1.46 THz. Appl. Phys. Lett. 2014, 104, 243509. [Google Scholar] [CrossRef]
- Izumi, R.; Suzuki, S.; Asada, M. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017. [Google Scholar] [CrossRef]
- Maekawa, T.; Kanaya, H.; Suzuki, S.; Asada, M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 2016, 9, 024101. [Google Scholar] [CrossRef]
- Asada, M.; Suzuki, S. Terahertz emitter using resonant-tunneling diode and applications. Sensors 2021, 21, 1384. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Yamaguchi, A.; Mukai, T. Terahertz imaging system with resonant tunneling diodes. Jpn. J. Appl. Phys. 2016, 55, 032201. [Google Scholar] [CrossRef]
- Al-Khalidi, A.; Alharbi, K.H.; Wang, J.; Morariu, R.; Wang, L.Q.; Khalid, A.; Figueiredo, J.M.L.; Wasige, E. Resonant tunneling diode terahertz sources with up to 1 mW output power in the J-band. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Kasagi, K.; Suzuki, S.; Asada, M. Large-scale array of resonant-tunneling-diode terahertz oscillator for high output power at 1 THz. J. Appl. Phys. 2019, 125, 151601. [Google Scholar] [CrossRef]
- Villani, M.; Clochiatti, S.; Prost, W.; Weimann, N.; Oriols, X. There is plenty of room for THz tunneling electron devices beyond the transit time limit. IEEE Electron Device Lett. 2021, 42, 224–227. [Google Scholar] [CrossRef]
- Sekiguchi, R.; Koyama, Y.; Ouchi, T. Subterahertz oscillations from triple-barrier resonant tunneling diodes with integrated patch antennas. Appl. Phys. Lett. 2010, 96, 062115. [Google Scholar] [CrossRef]
- Arzi, K.; Clochiatti, S.; Suzuki, S.; Rennings, A.; Erni, D.; Weimann, N.; Asada, M.; Prost, W. Triple-barrier resonant-tunnelling diode THz detectors with on-chip antenna. In Proceedings of the 12th German Microwave Conference (GEMIC), Stutgart, Germany, 25–27 March 2019; pp. 17–19. [Google Scholar] [CrossRef]
- Naftaly, M. Terahertz Metrology; Artech House: Norwood, MA, USA, 2015; p. 378. [Google Scholar]
- Gaskell, J.; Eaves, L.; Novoselov, K.S.; Mishchenko, A.; Geim, A.K.; Fromhold, T.M.; Greenaway, M.T. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Appl. Phys. Lett. 2015, 107, 103105. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhu, C.J.; Guo, W.L.; Cong, J.; Tee, A.A.T.H.; Song, L.; Zheng, Y.L. Resonant tunneling diode (RTD) terahertz active transmission line oscillator with graphene-plasma wave and two graphene antennas. Electronics 2019, 8, 1164. [Google Scholar] [CrossRef] [Green Version]
- Burg, G.W.; Prasad, N.; Fallahazad, B.; Valsaraj, A.; Kim, K.; Taniguchi, T.; Watanabe, K.; Wang, Q.X.; Kim, M.J.; Register, L.F.; et al. Coherent interlayer tunneling and negative differential resistance with high current density in double bilayer graphene−WSe2 heterostructures. Nano Lett. 2017, 17, 3919–3925. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.J.; Low, T.; Wang, H.; Ye, P.D.; Duan, X.F. Nanoscale electronic devices based on transition metal dichalcogenides. 2D Mater. 2019, 6, 032004. [Google Scholar] [CrossRef]
- Booske, J.H.; Dobbs, R.J.; Joye, C.D.; Kory, C.L.; Neil, G.R.; Park, G.S.; Park, J.; Temkin, R.J. Vacuum Electronic High Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 54–75. [Google Scholar] [CrossRef]
- Dayton, J.A., Jr.; Kory, C.L.; Mearini, G.T. Microfabricated mm-wave TWT platform for wireless backhaul. In Proceedings of the IEEE International Vacuum Electronics Conference (IVEC), Beijing, China, 27–29 April 2015. [Google Scholar] [CrossRef]
- Teraphysics. Available online: https://teraphysics.com/ (accessed on 11 June 2021).
- Dayton, J.A., Jr.; Kory, C.L.; Mearini, G.T.; Malta, D.; Lueck, M.; Gilchrist, K. Applying microfabrication to helical vacuum electron devices for THz applications. In Proceedings of the IEEE International Vacuum Electronics Conference (IVEC), Rome, Italy, 28–30 April 2009. [Google Scholar] [CrossRef]
- Kasjoo, S.R.; Mokhar, M.B.; Zakaria, N.F.; Juhari, N.J. A brief overview of detectors used for terahertz imaging systems. AIP Conf. Proc. 2020, 2203. [Google Scholar] [CrossRef]
- Knap, W.; Kachorovskii, V.; Deng, Y.; Rumyantsev, S.; Lü, J.Q.; Gaska, R.; Shur, M.S.; Simin, G.; Hu, X.; Khan, M.A.; et al. Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 2002, 91, 9346–9353. [Google Scholar] [CrossRef]
- Knap, W.; Teppe, F.; Meziani, Y.M.; Dyakonova, N.; Lusakowski, J.; Boeuf, F.; Skotnicki, T.; Maude, D.K.; Rumyantsev, S.; Shur, M.S. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 2004, 85, 675. [Google Scholar] [CrossRef] [Green Version]
- Tauk, R.; Teppe, F.; Boubanga, S.; Coquillat, D.; Knap, W.; Meziani, Y.M.; Gallon, C.; Boeuf, F.; Skotnicki, T.; Fenouillet-Beranger, C.; et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl. Phys. Lett. 2006, 89, 253511. [Google Scholar] [CrossRef] [Green Version]
- Nadar, S.; Videlier, H.; Coquillat, D.; Teppe, F.; Sakowicz, M.; Dyakonova, N.; Knap, W.; Seliuta, D.; Kašalynas, I.; Valušis, G. Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors. J. Appl. Phys. 2010, 108, 054508. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M. Detection, mixing, and frequency multiplication of terahertzradiation by two-dimensional electronic fluid. IEEE Trans. Electron. Dev. 1996, 43, 380–387. [Google Scholar] [CrossRef]
- Lisauskas, A.; Pfeiffer, U.; Öjefors, E.; Bolìvar, P.H.; Glaab, D.; Roskos, H.G. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 2009, 105, 114511. [Google Scholar] [CrossRef]
- Bauer, M.; Venckevičius, R.; Kašalynas, I.; Boppel, S.; Mundt, M.; Minkevičius, L.; Lisauskas, A.; Valušis, G.; Krozer, V.; Roskos, H.G. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz. Opt. Express 2014, 22, 19235–19241. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, K.; Seo, D.; Yang, L.; Hajimiri, A. Silicon Integrated 280 GHz Imaging Chipset With 4 × 4 SiGe Receiver Array and CMOS Source. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 427–437. [Google Scholar] [CrossRef]
- Ryu, M.W.; Lee, J.S.; Kim, K.S.; Park, K.; Yang, J.R.; Han, S.T.; Kim, K.R. High-Performance Plasmonic THz Detector Based on Asymmetric FET With Vertically Integrated Antenna in CMOS Technology. IEEE Trans. Electron Devices 2016, 63, 1742–1748. [Google Scholar] [CrossRef]
- Boppel, S.; Lisauskas, A.; Mundt, M.; Seliuta, D.; Minkevicius, L.; Kasalynas, I.; Valusis, G.; Mittendorff, M.; Winnerl, S.; Krozer, V.; et al. CMOS Integrated Antenna-Coupled Field-Effect Transistors for the Detection of Radiation From 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech. 2012, 60, 3834–3843. [Google Scholar] [CrossRef]
- Zdanevicius, J.; Cibiraite, D.; Ikamas, K.; Bauer, M.; Matukas, J.; Lisauskas, A.; Richter, H.; Hagelschuer, T.; Krozer, V.; Hubers, H.W.; et al. Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 613–621. [Google Scholar] [CrossRef]
- Ikamas, K.; Cibiraite, D.; Lisauskas, A.; Bauer, M.; Krozer, V.; Roskos, H.G. Broadband Terahertz Power Detectors based on 90-nm Silicon CMOS Transistors with Flat Responsivity up to 2.2 THz. IEEE Electron Device Lett. 2018, 39, 1413–1416. [Google Scholar] [CrossRef]
- Ikamas, K.; But, D.B.; Lisauskas, A. Homodyne spectroscopy with broadband terahertz power detector based on 90-nm silicon CMOS transistor. Appl. Sci. 2021, 11, 412. [Google Scholar] [CrossRef]
- Ikamas, K.; Lisauskas, A.; Massabeau, S.; Bauer, M.; Burakevič, M.; Vyšniauskas, J.; Čibiraitė, D.; Krozer, V.; Rämer, A.; Shevchenko, S.; et al. Sub-picosecond pulsed THz FET detector characterization in plasmonic detection regime based on autocorrelation technique. Semicond. Sci. Technol. 2018, 33, 124013. [Google Scholar] [CrossRef]
- Al Hadi, R.; Sherry, H.; Grzyb, J.; Zhao, Y.; Forster, W.; Keller, H.M.; Cathelin, A.; Kaiser, A.; Pfeiffer, U.R. A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS. IEEE J. Solid-State Circuits 2012, 47, 2999–3012. [Google Scholar] [CrossRef]
- Lisauskas, A.; Boppel, S.; Saphar, M.; Krozer, V.; Minkevičius, L.; Venckevičius, R.; Seliuta, D.; Kašalynas, I.; Tamošiūnas, V.; Valušis, G.; et al. Detectors for terahertz multi-pixel coherent imaging and demonstration of real-time imaging with a 12x12-pixel CMOS array. In Terahertz Emitters, Receivers, and Applications III; Razeghi, M., Baranov, A.N., Everitt, H.O., Zavada, J.M., Manzur, T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8496, p. 84960J. [Google Scholar] [CrossRef]
- Zdanevičius, J.; Bauer, M.; Boppel, S.; Palenskis, V.; Lisauskas, A.; Krozer, V.; Roskos, H.G. Camera for High-Speed THz Imaging. J. Infrared Millim. Terahertz Waves 2015, 36, 986–997. [Google Scholar] [CrossRef]
- Liu, Z.y.; Liu, L.y.; Yang, J.; Wu, N.j. A CMOS Fully Integrated 860-GHz Terahertz Sensor. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 455–465. [Google Scholar] [CrossRef]
- Lisauskas, A.; Bauer, M.; Boppel, S.; Mundt, M.; Khamaisi, B.; Socher, E.; Venckevičius, R.; Minkevičius, L.; Kašalynas, I.; Seliuta, D.; et al. Exploration of terahertz imaging with silicon MOSFETs. J. Infrared Millim. Terahertz Waves 2014, 35, 63–80. [Google Scholar] [CrossRef]
- Hillger, P.; Jain, R.; Grzyb, J.; Forster, W.; Heinemann, B.; MacGrogan, G.; Mounaix, P.; Zimmer, T.; Pfeiffer, U.R. A 128-Pixel System-on-a-Chip for Real-Time Super-Resolution Terahertz Near-Field Imaging. IEEE J. Solid-State Circuits 2018, 53, 3599–3612. [Google Scholar] [CrossRef]
- Javadi, E.; But, D.B.; Ikamas, K.; Zdanevičius, J.; Knap, W.; Lisauskas, A. Sensitivity of field-effect transistor-based terahertz detectors. Sensors 2021, 21, 2909. [Google Scholar] [CrossRef]
- Knap, W.; Dyakonov, M.; Coquillat, D.; Teppe, F.; Dyakonova, N.; Łusakowski, J.; Karpierz, K.; Sakowicz, M.; Valusis, G.; Seliuta, D.; et al. Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications. J. Infrared Millim. Terahertz Waves 2009, 30, 1319–1337. [Google Scholar] [CrossRef] [Green Version]
- Knap, W.; Valušis, G.; Łusakowski, J.; Coquillat, D.; Teppe, F.; Dyakonova, N.; Nadar, S.; Karpierz, K.; Bialek, M.; Seliuta, D.; et al. Field effect transistors for terahertz imaging. Phys. Status Solidi C 2009, 6, 2828–2833. [Google Scholar] [CrossRef]
- Nam, Y.; Sun, J.; Lindvall, N.; Jae Yang, S.; Rae Park, C.; Woo Park, Y.; Yurgens, A. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition. Appl. Phys. Lett. 2014, 104, 021902. [Google Scholar] [CrossRef] [Green Version]
- Zak, A.; Andersson, M.A.; Bauer, M.; Matukas, J.; Lisauskas, A.; Roskos, H.G.; Stake, J. Antenna-Integrated 0.6 THz FET Direct Detectors Based on CVD Graphene. Nano Lett. 2014, 14, 5834–5838. [Google Scholar] [CrossRef]
- Viti, L.; Purdie, D.G.; Lombardo, A.; Ferrari, A.C.; Vitiello, M.S. HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. Nano Lett. 2020, 20, 3169–3177. [Google Scholar] [CrossRef]
- Auton, G.; But, D.B.; Zhang, J.; Hill, E.; Coquillat, D.; Consejo, C.; Nouvel, P.; Knap, W.; Varani, L.; Teppe, F.; et al. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers. Nano Lett. 2017, 17, 7015–7020. [Google Scholar] [CrossRef]
- Gayduchenko, I.; Xu, S.G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A.K.; Fedorov, G.; et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat. Commun. 2021, 12, 543. [Google Scholar] [CrossRef]
- Oda, N. Technology trend in real-time, uncooled image sensors for sub-THz and THz wave detection. In Micro- and Nanotechnology Sensors, Systems, and Applications VIII; George, T., Dutta, A.K., Islam, M.S., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9836, pp. 476–493. [Google Scholar] [CrossRef]
- Kenneth, K.O. CMOS Platform for Terahertz. In Proceedings of the 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hiroshima, Japan, 2–4 September 2020; pp. 106–108. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, B.; Zhao, X.; Fan, Y.; Chen, X. 220 GHz wideband integrated receiver front end based on planar Schottky diodes. Microw. Opt. Technol. Lett. 2020, 62, 2737–2746. [Google Scholar] [CrossRef]
- Torkhov, N.A.; Babak, L.I.; Kokolov, A.A. On the Application of Schottky Contacts in the Microwave, Extremely High Frequency, and THz Ranges. Semiconductors 2019, 53, 1688–1698. [Google Scholar] [CrossRef]
- Jorudas, J.; Šimukovič, A.; Dub, M.; Sakowicz, M.; Prystawko, P.; Indrišiūnas, S.; Kovalevskij, V.; Rumyantsev, S.; Knap, W.; Kašalynas, I. AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics. Micromachines 2020, 11, 1131. [Google Scholar] [CrossRef]
- Balocco, C.; Kasjoo, S.R.; Lu, X.F.; Zhang, L.Q.; Alimi, Y.; Winnerl, S.; Song, A.M. Room-temperature operation of a unipolar nanodiode at terahertz frequencies. Appl. Phys. Lett. 2011, 98, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Daher, C.; Torres, J.; Iñiguez-de-la Torre, I.; Nouvel, P.; Varani, L.; Sangaré, P.; Ducournau, G.; Gaquière, C.; Mateos, J.; González, T. Room temperature direct and heterodyne detection of 0.28-0.69-THz Waves Based on GaN 2-DEG unipolar nanochannels. IEEE Trans. Electron Devices 2016, 63, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martín, H.; Sánchez-Martín, S.; Íñiguez-De-La-Torre, I.; Pérez, S.; Novoa, J.A.; Ducournau, G.; Grimbert, B.; Gaquière, C.; González, T.; Mateos, J. GaN nanodiode arrays with improved design for zero-bias sub-THz detection. Semicond. Sci. Technol. 2018, 33, 095016. [Google Scholar] [CrossRef]
- Sužiedelis, A.; Gradauskas, J.; Ašmontas, S.; Valušis, G.; Roskos, H.G. Giga- and terahertz frequency band detector based on an asymmetrically necked n-n+-GaAs planar structure. J. Appl. Phys. 2003, 93, 3034–3038. [Google Scholar] [CrossRef]
- Seliuta, D.; Širmulis, E.; Tamošiūnas, V.; Balakauskas, S.; Ašmontas, S.; Sužiedėlis, A.; Gradauskas, J.; Valušis, G.; Lisauskas, A.; Roskos, H.; et al. Detection of terahertz/sub-terahertz radiation by asymmetrically-shaped 2DEG layers. Electron. Lett. 2004, 40, 631–632. [Google Scholar] [CrossRef]
- Seliuta, D.; Kašalynas, I.; Tamošiūnas, V.; Balakauskas, S.; Martūnas, Z.; Ašmontas, S.; Valušis, G.; Lisauskas, A.; Roskos, H.; Köhler, K. Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature. Electron. Lett. 2006, 42, 825–827. [Google Scholar] [CrossRef]
- Kašalynas, I.; Venckevičius, R.; Seliuta, D.; Grigelionis, I.; Valušis, G. InGaAs-based bow-tie diode for spectroscopic terahertz imaging. J. Appl. Phys. 2011, 110, 114505. [Google Scholar] [CrossRef]
- Kasalynas, I.; Venckevicius, R.; Valusis, G. Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature. IEEE Sens. J. 2013, 13, 50–54. [Google Scholar] [CrossRef]
- Kašalynas, I.; Seliuta, D.; Simniškis, R.; Tamošiunas, V.; Köhler, K.; Valušis, G. Terahertz imaging with bow-tie InGaAs-based diode with broken symmetry. Electron. Lett. 2009, 45, 833–835. [Google Scholar] [CrossRef]
- Minkevičius, L.; Tamošiūnas, V.; Kašalynas, I.; Seliuta, D.; Valušis, G.; Lisauskas, A.; Boppel, S.; Roskos, H.G.; Köhler, K. Terahertz heterodyne imaging with InGaAs-based bow-tie diodes. Appl. Phys. Lett. 2011, 99, 131101. [Google Scholar] [CrossRef]
- Jokubauskis, D.; Minkevičius, L.; Seliuta, D.; Kašalynas, I.; Valušis, G. Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects. Opt. Eng. 2019, 58, 023104. [Google Scholar] [CrossRef]
- Palenskis, V.; Minkevičius, L.; Matukas, J.; Jokubauskis, D.; Pralgauskaitė, S.; Seliuta, D.; Čechavičius, B.; Butkutė, R.; Valušis, G. InGaAs diodes for terahertz sensing—effect of molecular beam epitaxy growth conditions. Sensors 2018, 18, 3760. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Lee, A.W.M. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array. Opt. Lett. 2005, 30, 2563–2565. [Google Scholar]
- Lee, A.W.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L. Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array. IEEE Photonics Technol. Lett. 2006, 18, 1415–1417. [Google Scholar] [CrossRef]
- Oden, J.; Meilhan, J.; Lalanne-Dera, J.; Roux, J.F.; Garet, F.; Coutaz, J.L.; Simoens, F. Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature. Opt. Express 2013, 21, 4817–4825. [Google Scholar] [CrossRef] [Green Version]
- Simoens, F.; Meilhan, J. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers. Philos. Trans. R. Soc. A 2014, 372, 20130111. [Google Scholar] [CrossRef] [Green Version]
- Minkevičius, L.; Qi, L.; Siemion, A.; Jokubauskis, D.; Sešek, A.; Švigelj, A.; Trontelj, J.; Seliuta, D.; Kašalynas, I.; Valušis, G. Titanium-based microbolometers: Control of spatial profile of terahertz emission in weak power sources. Appl. Sci. 2020, 10, 3400. [Google Scholar] [CrossRef]
- Qi, L.; Minkevičius, L.; Urbanowicz, A.; Švigelj, A.; Grigelionis, I.; Kašalynas, I.; Trontelj, J.; Valušis, G. Antenna-Coupled Titanium Microbolometers: Application for Precise Control of Radiation Patterns in Terahertz Time-Domain Systems. Sensors 2021, 21, 3510. [Google Scholar] [CrossRef] [PubMed]
- Kašalynas, I.; Venckevičius, R.; Minkevičius, L.; Sešek, A.; Wahaia, F.; Tamošiūnas, V.; Voisiat, B.; Seliuta, D.; Valušis, G.; Švigelj, A.; et al. Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues. Sensors 2016, 16, 432. [Google Scholar] [CrossRef]
- Zhang, Y.; Watanabe, Y.; Hosono, S.; Nagai, N.; Hirakawa, K. Room temperature, very sensitive thermometer using a doubly clamped microelectromechanical beam resonator for bolometer applications. Appl. Phys. Lett. 2016, 108, 163503. [Google Scholar] [CrossRef]
- Zhang, Y.; Hosono, S.; Nagai, N.; Song, S.H.; Hirakawa, K. Fast and sensitive bolometric terahertz detection at room temperature through thermomechanical transduction. J. Appl. Phys. 2019, 125, 151602. [Google Scholar] [CrossRef]
- Morohashi, I.; Zhang, Y.; Qiu, B.; Irimajiri, Y.; Sekine, N.; Hirakawa, K.; Hosako, I. Rapid Scan THz Imaging Using MEMS Bolometers. J. Infrared Millim. Terahertz Waves 2020, 41, 675–684. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Z.; Tang, W.; Xu, X. Design and fabrication of low-deformation micro-bolometers for THz detectors. Infrared Phys. Technol. 2020, 105, 103241. [Google Scholar] [CrossRef]
- Nascimento, V.M.; Méchin, L.; Liu, S.; Aryan, A.; Adamo, C.; Schlom, D.G.; Guillet, B. Electro-thermal and optical characterization of an uncooled suspended bolometer based on an epitaxial La 0.7 Sr 0.3 MnO3 film grown on CaTiO3/Si. J. Phys. Appl. Phys. 2021, 54, 055301. [Google Scholar] [CrossRef]
- Elamaran, D.; Suzuki, Y.; Satoh, H.; Banerjee, A.; Hiromoto, N.; Inokawa, H. Performance comparison of SOI-based temperature sensors for room-temperature terahertz antenna-coupled bolometers: MOSFET, PN junction diode and resistor. Micromachines 2020, 11, 718. [Google Scholar] [CrossRef]
- Fan, S.; Gou, J.; Niu, Q.; Xie, Z.; Wang, J. Broadband THz Absorption of Microbolometer Array Integrated with Split-Ring Resonators. Nanoscale Res. Lett. 2020, 15, 223. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, D.; Lee, S.H.; Seo, M.; Jung, H.J.; Kang, B.; Lee, S.M.; Lee, H.J. Single-layer metamaterial bolometer for sensitive detection of low-power terahertz waves at room temperature. Opt. Express 2020, 28, 17143–17152. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz Magnetic Response from Artificial Materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, W.J.; Taylor, A.J.; Highstrete, C.; Lee, M.; Averitt, R.D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 2006, 96, 107401. [Google Scholar] [CrossRef]
- Chen, H.T.; Padilla, W.J.; Zide, J.M.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Meng, T.; Wang, H.; Ma, Y.; Zhu, Q. Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application. Results Phys. 2020, 19, 103567. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, B.; Yan, M.; Wu, B.; Cheng, P.; Sun, Z. Tunable terahertz perfect absorber with a graphene-based double split-ring structure. Opt. Mater. Express 2021, 11, 73–79. [Google Scholar] [CrossRef]
- Siemion, A. Terahertz Diffractive Optics—Smart Control over Radiation. J. Infrared Millim. Terahertz Waves 2019, 40, 477–499. [Google Scholar] [CrossRef] [Green Version]
- Siemion, A. The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements. Sensors 2021, 21, 100. [Google Scholar] [CrossRef]
- Headland, D.; Monnai, Y.; Abbott, D.; Fumeaux, C.; Withayachumnankul, W. Tutorial: Terahertz beamforming, from concepts to realizations. APL Photonics 2018, 3, 051101. [Google Scholar] [CrossRef] [Green Version]
- Ivaškevičiūtė-Povilauskienė, R.; Minkevičius, L.; Jokubauskis, D.; Urbanowicz, A.; Indrišiūnas, S.; Valušis, G. Flexible materials for terahertz optics: Advantages of graphite-based structures. Opt. Mater. Express 2019, 9, 4438–4446. [Google Scholar] [CrossRef]
- Van Putten, L.D.; Gorecki, J.; Numkam Fokoua, E.; Apostolopoulos, V.; Poletti, F. 3D-printed polymer antiresonant waveguides for short-reach terahertz applications. Appl. Opt. 2018, 57, 3953–3958. [Google Scholar] [CrossRef] [PubMed]
- Bomba, J.; Suszek, J.; Makowski, M.; Sobczyk, A.; Sypek, M. 3-D Printed Anti-Reflection Structures for the Terahertz Region. J. Infrared Millim. Terahertz Waves 2018, 39, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Walsby, E.D.; Wang, S.; Xu, J.; Yuan, T.; Blaikie, R.; Durbin, S.M.; Zhang, X.C.; Cumming, D.R. Multilevel silicon diffractive optics for terahertz waves. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. 2002, 20, 2780–2783. [Google Scholar] [CrossRef] [Green Version]
- Minkevičius, L.; Indrišiūnas, S.; Šniaukas, R.; Voisiat, B.; Janonis, V.; Tamošiūnas, V.; Kašalynas, I.; Račiukaitis, G.; Valušis, G. Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon. Opt. Lett. 2017, 42, 1875–1878. [Google Scholar] [CrossRef]
- Minkevičius, L.; Jokubauskis, D.; Kašalynas, I.; Orlov, S.; Urbas, A.; Valušis, G. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics. Opt. Express 2019, 27, 36358–36367. [Google Scholar] [CrossRef] [PubMed]
- Jokubauskis, D.; Minkevičius, L.; Karaliūnas, M.; Indrišiūnas, S.; Kašalynas, I.; Račiukaitis, G.; Valušis, G. Fibonacci terahertz imaging by silicon diffractive optics. Opt. Lett. 2018, 43, 2795–2798. [Google Scholar] [CrossRef]
- Minkevičius, L.; Indrišiunas, S.; Šniaukas, R.; Račiukaitis, G.; Janonis, V.; Tamošiunas, V.; Kašalynas, I.; Valušis, G. Compact diffractive optics for THz imaging. Lith. J. Phys. 2018, 58, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Tamošiūnaitė, M.; Indrišiūnas, S.; Tamošiūnas, V.; Minkevičius, L.; Urbanowicz, A.; Račiukaitis, G.; Kašalynas, I.; Valušis, G. Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 541–548. [Google Scholar] [CrossRef]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. [Google Scholar] [CrossRef]
- Dharmavarapu, R.; Izumi, K.I.; Katayama, I.; Ng, S.H.; Vongsvivut, J.; Tobin, M.J.; Kuchmizhak, A.; Nishijima, Y.; Bhattacharya, S.; Juodkazis, S. Dielectric cross-shaped resonator based metasurface for vortex beam generation in Mid-IR and THz wavelengths. De Gruyter 2019, 8, 1263–1270. [Google Scholar]
- Fan, K.; Zhang, J.; Liu, X.; Zhang, G.F.; Averitt, R.D.; Padilla, W.J. Phototunable Dielectric Huygens’ Metasurfaces. Adv. Mater. 2018, 30, 1800278. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Ako, R.T.; Lee, W.S.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Broadband terahertz transmissive quarter-wave metasurface. APL Photonics 2020, 5, 096108. [Google Scholar] [CrossRef]
- Zang, X.; Mao, C.; Guo, X.; You, G.; Yang, H.; Chen, L.; Zhu, Y.; Zhuang, S. Polarization-controlled terahertz super-focusing. Appl. Phys. Lett. 2018, 113, 071102. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz surface plasmonic waves: A review. Adv. Photonics 2020, 2, 014001. [Google Scholar] [CrossRef]
- Yang, X.; Tian, Z.; Chen, X.; Hu, M.; Yi, Z.; Ouyang, C.; Gu, J.; Han, J.; Zhang, W. Terahertz single-pixel near-field imaging based on active tunable subwavelength metallic grating. Appl. Phys. Lett. 2020, 116, 241106. [Google Scholar] [CrossRef]
- Clevenson, H.A.; Spector, S.J.; Benney, L.; Moebius, M.G.; Brown, J.; Hare, A.; Huang, A.; Mlynarczyk, J.; Poulton, C.V.; Hosseini, E.; et al. Incoherent light imaging using an optical phased array. Appl. Phys. Lett. 2020, 116, 031105. [Google Scholar] [CrossRef]
- Veli, M.; Mengu, D.; Yardimci, N.T.; Luo, Y.; Li, J.; Rivenson, Y.; Jarrahi, M.; Ozcan, A. Terahertz pulse shaping using diffractive surfaces. Nat. Commun. 2021, 12, 37. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, L.; Liu, S.; Waller, L. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J. Biomed. Opt. 2014, 19, 106002. [Google Scholar] [CrossRef]
- Löffler, T.; Bauer, T.; Siebert, K.J.; Roskos, H.G.; Fitzgerald, A.; Czasch, S. Terahertz dark-field imaging of biomedical tissue. Opt. Express 2001, 9, 616–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemion, A.; Minkevičius, L.; Qi, L.; Valušis, G. Spatial filtering based terahertz imaging of low absorbing objects. Opt. Lasers Eng. 2021, 139, 106476. [Google Scholar] [CrossRef]
- Bhargava Ram, B.S.; Senthilkumaran, P.; Sharma, A. Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate. Appl. Opt. 2017, 56, 3171–3178. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Mirzaei, B.; van der Poel, S.; Silva, J.R.G.; Finkel, M.; Eggens, M.; Ridder, M.; Khalatpour, A.; Hu, Q.; van der Tak, F.; et al. 39 THz spatial filter based on a back-to-back Si-lens system. Opt. Express 2020, 28, 32693–32708. [Google Scholar] [CrossRef]
- Liu, X.; Kulya, M.S.; Petrov, N.V.; Grachev, Y.V.; Song, M.; Tcypkin, A.N.; Kozlov, S.A.; Zhang, X.C. Spectral Fresnel filter for pulsed broadband terahertz radiation. AIP Adv. 2020, 10, 125104. [Google Scholar] [CrossRef]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Qin, H.; Li, X.; Sun, J.; Zhang, Z.; Sun, Y.; Yu, Y.; Li, X.; Luo, M. Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors. Appl. Phys. Lett. 2017, 110, 171109. [Google Scholar] [CrossRef] [Green Version]
- Szkudlarek, K.; Sypek, M.; Cywiński, G.; Suszek, J.; Zagrajek, P.; Feduniewicz-Żmuda, A.; Yahniuk, I.; Yatsunenko, S.; Nowakowska-Siwińska, A.; Coquillat, D.; et al. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays. Opt. Express 2016, 24, 20119–20131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkevičius, L.; Tamošiunas, V.; Madeikis, K.; Voisiat, B.; Kašalynas, I.; Valušis, G. On-chip integration of laser-ablated zone plates for detection enhancement of InGaAs bow-tie terahertz detectors. Electron. Lett. 2014, 50, 1367–1369. [Google Scholar] [CrossRef]
- Escorcia, I.; Grant, J.; Gough, J.; Cumming, D.R.S. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt. Lett. 2016, 41, 3261–3264. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Qin, J.; Han, Z. Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide. Opt. Express 2017, 25, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Matyushkin, Y.; Danilov, S.; Moskotin, M.; Belosevich, V.; Kaurova, N.; Rybin, M.; Obraztsova, E.D.; Fedorov, G.; Gorbenko, I.; Kachorovskii, V.; et al. Helicity-Sensitive Plasmonic Terahertz Interferometer. Nano Lett. 2020, 20, 7296–7303. [Google Scholar] [CrossRef]
- Mait, J.N.; Euliss, G.W.; Athale, R.A. Computational imaging. Adv. Opt. Photonics 2018, 10, 409–483. [Google Scholar] [CrossRef]
- Barbastathis, G.; Ozcan, A.; Situ, G. On the use of deep learning for computational imaging. Optica 2019, 6, 921–943. [Google Scholar] [CrossRef]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A.W. Computational absorption and reflection studies of normal human skin at 0.45 THz. Biomed. Opt. Express 2020, 11, 417–431. [Google Scholar] [CrossRef]
- Zhao, J.; Yiwen, E.; Williams, K.; Zhang, X.C.; Boyd, R.W. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light. Sci. Appl. 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Welsh, S.S.; Edgar, M.P.; Bowman, R.; Jonathan, P.; Sun, B.; Padgett, M.J. Fast full-color computational imaging with single-pixel detectors. Opt. Express 2013, 21, 23068–23074. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, L.; Totero Gongora, J.S.; Pasquazi, A.; Peccianti, M. Time-Resolved Nonlinear Ghost Imaging. ACS Photonics 2018, 5, 3379–3388. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, L.; Gongora, J.S.T.; Peters, L.; Cecconi, V.; Cutrona, A.; Tunesi, J.; Tucker, R.; Pasquazi, A.; Peccianti, M. Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica 2020, 7, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Edgar, M.P.; Gibson, G.M.; Padgett, M.J. Principles and prospects for single-pixel imaging. Nat. Photonics 2019, 13, 13–20. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Shrekenhamer, D.; Watts, C.M.; Padilla, W.J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express 2013, 21, 12507–12518. [Google Scholar] [CrossRef]
- Stantchev, R.I.; Yu, X.; Blu, T.; Pickwell-MacPherson, E. Real-time terahertz imaging with a single-pixel detector. Nat. Commun. 2020, 11, 2535. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, X.; Sun, W.; Han, P.; Ye, J.; Feng, S.; Zhang, Y. Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction. Opt. Express 2019, 27, 14725–14735. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.; Moravec, M.L.; Baraniuk, R.G.; Mittleman, D.M. Terahertz imaging with compressed sensing and phase retrieval. Opt. Lett. 2008, 33, 974–976. [Google Scholar] [CrossRef]
- Shen, H.; Gan, L.; Newman, N.; Dong, Y.; Li, C.; Huang, Y.; Shen, Y.C. Spinning disk for compressive imaging. Opt. Lett. 2012, 37, 46–48. [Google Scholar] [CrossRef] [Green Version]
- Vallés, A.; He, J.; Ohno, S.; Omatsu, T.; Miyamoto, K. Broadband high-resolution terahertz single-pixel imaging. Opt. Express 2020, 28, 28868–28881. [Google Scholar] [CrossRef]
- Watts, C.M.; Shrekenhamer, D.; Montoya, J.; Lipworth, G.; Hunt, J.; Sleasman, T.; Krishna, S.; Smith, D.R.; Padilla, W.J. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 2014, 8, 605–609. [Google Scholar] [CrossRef]
- Valzania, L.; Zolliker, P.; Hack, E. Coherent reconstruction of a textile and a hidden object with terahertz radiation. Optica 2019, 6, 518–523. [Google Scholar] [CrossRef]
- Petrov, N.V.; Kulya, M.S.; Tsypkin, A.N.; Bespalov, V.G.; Gorodetsky, A. Application of Terahertz Pulse Time-Domain Holography for Phase Imaging. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, M.; Ravaro, M.; Bartalini, S.; Consolino, L.; Vitiello, M.S.; Cicchi, R.; Pavone, F.; De Natale, P. Real-time terahertz digital holography with a quantum cascade laser. Sci. Rep. 2015, 5, 13566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, M.; Grant, J.P.; Escorcia-Carranza, I.; Accarino, C.; Kenney, M.; Shah, Y.D.; Rew, K.G.; Cumming, D.R.S. Video-rate terahertz digital holographic imaging system. Opt. Express 2018, 26, 25805–25813. [Google Scholar] [CrossRef]
- Yuan, H.; Voß, D.; Lisauskas, A.; Mundy, D.; Roskos, H.G. 3D Fourier imaging based on 2D heterodyne detection at THz frequencies. APL Photonics 2019, 4, 106108. [Google Scholar] [CrossRef]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica 2018, 5, 109–116. [Google Scholar] [CrossRef]
- Perraud, J.B.; Guillet, J.P.; Redon, O.; Hamdi, M.; Simoens, F.; Mounaix, P. Shape-from-focus for real-time terahertz 3D imaging. Opt. Lett. 2019, 44, 483–486. [Google Scholar] [CrossRef]
- Wang, D.; Li, B.; Rong, L.; Tan, F.; Healy, J.J.; Zhao, J.; Wang, Y. Multi-layered full-field phase imaging using continuous-wave terahertz ptychography. Opt. Lett. 2020, 45, 1391–1394. [Google Scholar] [CrossRef]
- Guerboukha, H.; Cao, Y.; Nallappan, K.; Skorobogatiy, M. Super-Resolution Orthogonal Deterministic Imaging Technique for Terahertz Subwavelength Microscopy. ACS Photonics 2020, 7, 1866–1875. [Google Scholar] [CrossRef]
- Qiao, M.; Meng, Z.; Ma, J.; Yuan, X. Deep learning for video compressive sensing. APL Photonics 2020, 5, 030801. [Google Scholar] [CrossRef]
- Valzania, L.; Feurer, T.; Zolliker, P.; Hack, E. Terahertz ptychography. Opt. Lett. 2018, 43, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Guillet, J.P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 2014, 35, 382–411. [Google Scholar] [CrossRef] [Green Version]
- Balacey, H.; Recur, B.; Perraud, J.B.; Sleiman, J.B.; Guillet, J.P.; Mounaix, P. Advanced Processing Sequence for 3-D THz Imaging. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 191–198. [Google Scholar] [CrossRef]
- Valzania, L.; Zhao, Y.; Rong, L.; Wang, D.; Georges, M.; Hack, E.; Zolliker, P. THz coherent lensless imaging. Appl. Opt. 2019, 58, G256–G275. [Google Scholar] [CrossRef] [Green Version]
- Rajabalipanah, H.; Rouhi, K.; Abdolali, A.; Iqbal, S.; Zhang, L.; Liu, S. Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms. De Gruyter 2020, 9, 2861–2877. [Google Scholar] [CrossRef]
- Keilmann, F. FIR microscopy. Infrared Phys. Technol. 1995, 36, 217–224. [Google Scholar] [CrossRef]
- Pfeifer, T.; Heiliger, H.M.; Löffler, T.; Ohlhoff, C.; Meyer, C.; Lüpke, G.; Roskos, H.G.; Kurz, H. Optoelectronic on-chip characterization of ultrafast electric devices: Measurement techniques and applications. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 586–604. [Google Scholar] [CrossRef]
- Knab, J.R.; Adam, A.J.L.; Shaner, E.; Starmans, H.J.A.J.; Planken, P.C.M. Terahertz near-field spectroscopy of filled subwavelength sized apertures in thin metal films. Opt. Express 2013, 21, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, M.; Matheisen, C.; Kurz, H. 12 - Novel techniques in terahertz near-field imaging and sensing. In Handbook of Terahertz Technology for Imaging, Sensing and Communications; Saeedkia, D., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Boca Raton, FL, USA, 2013; pp. 374–402. [Google Scholar] [CrossRef]
- Heiliger, H.M.; Vossebürger, M.; Roskos, H.G.; Kurz, H.; Hey, R.; Ploog, K. Application of liftoff low temperature grown GaAs on transparent substrates for THz signal generation. Appl. Phys. Lett. 1996, 69, 2903–2905. [Google Scholar] [CrossRef]
- Sawallich, S.; Globisch, B.; Matheisen, C.; Nagel, M.; Dietz, R.J.B.; Göbel, T. Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 365–370. [Google Scholar] [CrossRef]
- Yamashita, M.; Kawase, K.; Otani, C.; Kiwa, T.; Tonouchi, M. Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 2005, 13, 115–120. [Google Scholar] [CrossRef]
- Mochizuki, T.; Ito, A.; Nakanishi, H.; Tanahashi, K.; Kawayama, I.; Tonouchi, M.; Shirasawa, K.; Takato, H. Noncontact evaluation of electrical passivation of oxidized silicon using laser terahertz emission microscope and corona charging. J. Appl. Phys. 2019, 125, 151615. [Google Scholar] [CrossRef]
- Seo, M.A.; Adam, A.J.L.; Kang, J.H.; Lee, J.W.; Ahn, K.J.; Park, Q.H.; Planken, P.C.M.; Kim, D.S. Near field imaging of terahertz focusing onto rectangular apertures. Opt. Express 2008, 16, 20484–20489. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Seo, M.A.; Kang, J.H.; Khim, K.S.; Jeoung, S.C.; Kim, D.S. Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Phys. Rev. Lett. 2007, 99, 137401. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.S.; Park, H.R.; Pelton, M.; Piao, X.J.; Lindquist, N.C.; Im, H.; Kim, Y.J.; Ahn, J.S.; Ahn, K.J.; Park, N.; et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 2013, 4, 2361. [Google Scholar] [CrossRef] [Green Version]
- Won, S.; Jung, H.J.; Kim, D.; Lee, S.H.; Lam, D.V.; Kim, H.D.; Kim, K.S.; Lee, S.M.; Seo, M.; Kim, D.S.; et al. Graphene-based crack lithography for high-throughput fabrication of terahertz metamaterials. Carbon 2020, 158, 505–512. [Google Scholar] [CrossRef]
- Kang, T.; Bahk, Y.M.; Kim, D.S. Terahertz quantum plasmonics at nanoscales and angstrom scales. Nanophotonics 2020, 9, 435–451. [Google Scholar] [CrossRef] [Green Version]
- Park, H.R.; Ahn, K.J.; Han, S.; Bahk, Y.M.; Park, N.; Kim, D.S. Colossal absorption of molecules inside single terahertz nanoantennas. Nano Lett. 2013, 13, 1782–1786. [Google Scholar] [CrossRef]
- Lee, S.H.; Shin, S.; Roh, Y.; Oh, S.J.; Lee, S.H.; Song, H.S.; Ryu, Y.S.; Kim, Y.K.; Seo, M. Label-free brain tissue imaging using large-area terahertz metamaterials. Biosens. Bioelectron. 2020, 170, 112663. [Google Scholar] [CrossRef]
- Walla, F.; Wiecha, M.M.; Mecklenbeck, N.; Beldi, S.; Keilmann, F.; Thomson, M.D.; Roskos, H.G. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a nonrotationally-symmetric probe tip. Nanophotonics 2018, 7, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Degl’Innocenti, R.; Wallis, R.; Wei, B.; Xiao, L.; Kindness, S.J.; Mitrofanov, O.; Braeuninger-Weimer, P.; Hofmann, S.; Beere, H.E.; Ritchie, D.A. Terahertz Nanoscopy of Plasmonic Resonances with a Quantum Cascade Laser. ACS Photonics 2017, 4, 2150–2157. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature 2002, 418, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Keilmann, F.; Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. 2004, 362, 787–805. [Google Scholar] [CrossRef] [PubMed]
- Gomez, L.; Bachelot, R.; Bouhelier, A.; Wiederrecht, G.P.; Chang, S.H.; Gray, S.K.; Hua, F.; Jeon, S.; Rogers, J.A.; Castro, M.E.; et al. Apertureless scanning near-field optical microscopy: A comparison between homodyne and heterodyne approaches. J. Opt. Soc. Am. 2006, 23, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Ocelic, N.; Huber, A.; Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 2006, 89, 101124. [Google Scholar] [CrossRef]
- Taubner, T.; Keilmann, F.; Hillenbrand, R. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. Opt. Express 2005, 13, 8893–8899. [Google Scholar] [CrossRef]
- Govyadinov, A.A.; Mastel, S.; Golmar, F.; Chuvilin, A.; Carney, P.S.; Hillenbrand, R. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 2014, 8, 6911–6921. [Google Scholar] [CrossRef]
- Mey, O.; Wall, F.; Schneider, L.M.; Günder, D.; Walla, F.; Soltani, A.; Roskos, H.; Yao, N.; Qing, P.; Fang, W.; et al. Enhancement of the monolayer tungsten-disulfide exciton photoluminescence with a two-dimensional-material/air/gallium-phosphide in-plane microcavity. ACS Nano 2019, 13, 5259–5267. [Google Scholar] [CrossRef]
- Mooshammer, F.; Huber, M.A.; Sandner, F.; Plankl, M.; Zizlsperger, M.; Huber, R. Quantifying nanoscale electromagnetic fields in near-field microscopy by Fourier demodulation analysis. ACS Photonics 2020, 7, 344–351. [Google Scholar] [CrossRef]
- Mester, L.; Govyadinov, A.A.; Chen, S.; Goikoetxea, M.; Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 2020, 11, 3359. [Google Scholar] [CrossRef]
- Moon, K.; Park, H.; Kim, J.; Do, Y.; Lee, S.; Lee, G.; Kang, H.; Han, H. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 2015, 15, 549–552. [Google Scholar] [CrossRef]
- Hunsche, S.; Koch, M.; Brener, I.; Nuss, M.C. THz near-field imaging. Opt. Commun. 1998, 150, 22–26. [Google Scholar] [CrossRef]
- Chen, H.T.; Kersting, R.; Cho, G.C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 2003, 83, 3009–3011. [Google Scholar] [CrossRef]
- Wiecha, M.M.; Soltani, A.; Roskos, H.G. Terahertz nano-imaging with s-SNOM. In Terahertz Technology; You, B., Lu, J.Y., Eds.; Intechopen: Rijeka, Croatia, 2021. [Google Scholar]
- Von Ribbeck, H.G.; Brehm, M.; van der Weide, D.W.; Winnerl, S.; Drachenko, O.; Helm, M.; Keilmann, F. Spectroscopic THz near-field microscope. Opt. Express 2008, 16, 3430–3438. [Google Scholar] [CrossRef] [Green Version]
- Mastel, S.; Lundeberg, M.B.; Alonso-González, P.; Gao, Y.; Watanabe, K.; Taniguchi, T.; Hone, J.; Koppen, F.H.L.; Nikitin, A.Y.; Hillenbrand, R. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 2017, 17, 6526–6533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maissen, C.; Chen, S.; Nikulina, E.; Govyadinov, A.; Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 2019, 6, 1279–1288. [Google Scholar] [CrossRef]
- Siday, T.; Hale, L.L.; Hermans, R.I.; Mitrofanov, O. Resonance-enhanced terahertz nanoscopy probes. ACS Photonics 2020, 7, 596–601. [Google Scholar] [CrossRef]
- Moon, K.; Do, Y.; Lim, N.; Lee, G.; Kang, H.; Park, K.S.; Han, H. Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes. Appl. Phys. Lett. 2012, 101, 011109. [Google Scholar] [CrossRef] [Green Version]
- Mastel, S.; Govyadinov, A.A.; Maissen, C.; Chuvilin, A.; Berger, A.; Hillenbrand, R. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics 2018, 5, 3372–3378. [Google Scholar] [CrossRef] [Green Version]
- Zhan, H.; Astley, V.; Hvasta, M.; Deibel, J.A.; Mittleman, D.M.; Lim, Y.S. The metal-insulator transition in VO2 studied using terahertz apertureless near-field microscopy. Appl. Phys. Lett. 2007, 91, 162110. [Google Scholar] [CrossRef]
- Huber, A.J.; Keilmann, F.; Wittborn, J.; Aizpurua, J.; Hillenbrand, R. Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices. Nano Lett. 2008, 8, 3766–3770. [Google Scholar] [CrossRef] [PubMed]
- Nagel, M.; Sawallich, S.; Michalski, A.; Schäffer, S.; Wigger, A.; Bolivar, P.H. A novel scattering-type SNOM-tip featuring a micro-integrated bias-free optically driven terahertz pulse emitter. In Proceedings of the 45th Internat. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020. [Google Scholar] [CrossRef]
- Kuschewski, F.; von Ribbeck, H.G.; Döring, J.; Winnerl, S.; Eng, L.M.; Kehr, S.C. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 2016, 108, 113102. [Google Scholar] [CrossRef]
- Soltani, A.; Kuschewski, F.; Bonmann, M.; Generalov, A.; Vorobiev, A.; Ludwig, F.; Wiecha, M.M.; Cibiraitė, D.; Walla, F.; Winnerl, S.; et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light-Sci. Appl. 2020, 9, 97. [Google Scholar] [CrossRef]
- Pogna, E.A.A.; Asgari, M.; Zannier, V.; Sorba, L.; Viti, L.; Vitiello, M.S. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy. Light-Sci. Appl. 2020, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Liewald, C.; Mastel, S.; Hesler, J.; Huber, A.J.; Hillenbrand, R.; Keilmann, F. All-electronic terahertz nanoscopy. Optica 2018, 5, 159. [Google Scholar] [CrossRef]
- Dai, G.; Geng, G.; Zhang, X.; Wang, J.; Chang, T.; Cui, H.L. W-Band Near-Field Microscope. IEEE Access 2019, 7, 48060–48067. [Google Scholar] [CrossRef]
- Chen, X.Z.; Liu, X.; Guo, X.D.; Chen, S.; Hu, H.; Nikulina, E.; Ye, X.L.; Yao, Z.H.; Bechtel, H.A.; Martin, M.C.; et al. THz near-field imaging of extreme subwavelength metal structures. ACS Photonics 2020, 7, 687–694. [Google Scholar] [CrossRef]
- Wiecha, M.M.; Kapoor, R.; Chernyadiev, A.V.; Ikamas, K.; Lisauskas, A.; Roskos, H.G. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy. Nanoscale Adv. 2021, 3, 1717–1724. [Google Scholar] [CrossRef]
- Ikamas, K.; Lisauskas, A.; Boppel, S.; Hu, Q.; Roskos, H.G. Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors. J. Infrared Millim. Terahertz Waves 2017, 38, 1183–1188. [Google Scholar] [CrossRef]
- Boppel, S.; Ragauskas, M.; Hajo, A.; Bauer, M.; Lisauskas, A.; Chevtchenko, S.; Rämer, A.; Kašalynas, I.; Valušis, G.; Würfl, H.J.; et al. 0.25-µm GaN TeraFETs Optimized as THz Power Detectors and Intensity-Gradient Sensors. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 348–350. [Google Scholar] [CrossRef]
- Bauer, M.; Rämer, A.; Chevtchenko, S.A.; Osipov, K.Y.; Cibiraitė, D.; Pralgauskaitė, S.; Ikamas, K.; Lisauskas, A.; Heinrich, W.; Krozer, V.; et al. A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 430–444. [Google Scholar] [CrossRef]
- Stinson, H.T.; Sternbach, A.; Najera, O.; Jing, R.; Mcleod, A.S.; Slusar, T.V.; Mueller, A.; Anderegg, L.; Kim, H.T.; Rozenberg, M.; et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 2018, 9, 3604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzaim, O.; Haddadi, K.; Wang, M.M.; Maazi, M.; Glay, D.; Lasri, T. Scanning Near-Field Millimeter-Wave Microscope: Application to a Vector-Coding Technique. IEEE Trans. Instrum. Meas. 2008, 57, 2392–2397. [Google Scholar] [CrossRef]
- Tuca, S.S.; Kasper, M.; Kienberger, F.; Gramse, G. Interferometer scanning microwave microscopy: Performance evaluation. IEEE Trans. Nanotechnol. 2017, 16, 991–998. [Google Scholar] [CrossRef]
- Asakawa, K.; il Kim, D.; Yaguchi, S.; Tsujii, M.; Yoshioka, K.; Kaneshima, K.; Arashida, Y.; Yoshida, S.; Shigekawa, H.; Kuwahara, M.; et al. Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope. Appl. Phys. Lett. 2020, 117, 211102. [Google Scholar] [CrossRef]
- Cocker, T.L.; Jelic, V.; Gupta, M.; Molesky, S.J.; Burgess, J.A.J.; De Los Reyes, G.; Titova, L.V.; Tsui, Y.Y.; Freeman, M.R.; Hegmann, F.A. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 2013, 7, 620–625. [Google Scholar] [CrossRef]
- Cocker, T.L.; Peller, D.; Yu, P.; Repp, J.; Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 2016, 539, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Jelic, V.; Iwaszczuk, K.; Nguyen, P.H.; Rathje, C.; Hornig, G.J.; Sharum, H.M.; Hoffman, J.R.; Freeman, M.R.; Hegmann, F.A. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 2017, 13, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Martín Sabanés, N.; Kampfrath, T.; Wolf, M. Phase-Resolved Detection of Ultrabroadband THz Pulses inside a Scanning Tunneling Microscope Junction. ACS Photonics 2020, 7, 2046–2055. [Google Scholar] [CrossRef]
- Luo, Y.; Jelic, V.; Chen, G.; Nguyen, P.H.; Liu, Y.J.R.; Calzada, J.A.M.; Mildenberger, D.J.; Hegmann, F.A. Nanoscale terahertz STM imaging of a metal surface. Phys. Rev. 2020, 102, 205417. [Google Scholar] [CrossRef]
- Peller, D.; Roelcke, C.; Kastner, L.Z.; Buchner, T.; Neef, A.; Hayes, J.; Bonafé, F.; Sidler, D.; Ruggenthaler, M.; Rubio, A.; et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photonics 2021, 15, 143–147. [Google Scholar] [CrossRef]
- Takeda, J.; Katayama, I. Waveform sampling on an atomic scale. Nat. Photonics 2021, 15, 70–71. [Google Scholar] [CrossRef]
- Yoshida, S.; Arashida, Y.; Hirori, H.; Tachizaki, T.; Taninaka, A.; Ueno, H.; Takeuchi, O.; Shigekawa, H. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations. ACS Photonics 2021, 8, 315–323. [Google Scholar] [CrossRef]
- Durmaz, Y.C.; Goetz, A.; Keilmann, F. Infrared Nanoscopy of Alive Biological Cell Surfaces. In Proceedings of the 44th International Conference on Infrared, Millimeter, and TerahertzWaves (IRMMW-THz), Paris, France, 1–6 September 2019; p. 1. [Google Scholar] [CrossRef]
- Schäffer, S.; Wigger, A.K.; Bolívar, P.H. Substrate-enhanced THz nanoscopic recognition of single bacteria. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar] [CrossRef]
- The Nobel Prize in Chemistry. 2014. Available online: https://www.nobelprize.org/prizes/chemistry/2014/summary/ (accessed on 11 June 2021).
- Schermelleh, L.; Heintzmann, R.; Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010, 190, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84. [Google Scholar] [CrossRef]
- Wang, L.; Tran, M.; D’Este, E.; Roberti, J.; Koch, B.; Xue, L.; Johnsson, K. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nat. Chem. 2020, 12, 165–172. [Google Scholar] [CrossRef]
- Komiyama, S. Single-Photon Detectors in the Terahertz Range. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 54–66. [Google Scholar] [CrossRef]
- Seifert, P.; Lu, X.; Stepanov, P.; Retamal, J.R.D.; Moore, J.N.; Fong, K.C.; Principi, A.; Efetov, D.K. Magic-Angle Bilayer Graphene Nanocalorimeters: Toward Broadband, Energy-Resolving Single Photon Detection. Nano Lett. 2020, 20, 3459–3464. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, A.; Talias, M.A. Nanotechnology-supported THz medical imaging. F1000Research 2019, 2, 100. [Google Scholar] [CrossRef] [Green Version]
- Llatser, I.; Kremers, C.; Cabellos-Aparicio, A.; Jornet, J.M.; Alarcon, E.; Chigrin, D.N. Graphene-based nano-patch antenna for terahertz radiation. Photonics Nanostructures-Fundam. Appl. 2012, 10, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Zouaghi, W.; Voß, D.; Gorath, M.; Nicoloso, N.; Roskos, H.G. How good would the conductivity of graphene have to be to make single-layer-graphene metamaterials for terahertz frequencies feasible? Carbon 2015, 94, 301–308. [Google Scholar] [CrossRef]
- Levoy, M. Light fields and computational imaging. Computer 2006, 39, 46–55. [Google Scholar] [CrossRef]
- Jain, R.; Grzyb, J.; Pfeiffer, U.R.; Member, S. Terahertz Light-Field Imaging. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 649–657. [Google Scholar] [CrossRef]
- Pfeiffer, U.R.; Hillger, P.; Jain, R.; Grzyb, J.; Bucher, T.; Cassar, Q.; MaCgrogan, G.; Guillet, J.P.; Mounaix, P.; Zimmer, T. Ex vivo breast tumor identification. IEEE Microw. Mag. 2019, 20, 32–46. [Google Scholar] [CrossRef]
- Rumyantsev, S.; Liu, X.; Kachorovskii, V.; Shur, M. Homodyne phase sensitive terahertz spectrometer. Appl. Phys. Lett. 2017, 111. [Google Scholar] [CrossRef]
- Hugi, A.; Villares, G.; Blaser, S.; Liu, H.C.; Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 2012, 492, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Faist, J.; Villares, G.; Scalari, G.; Rösch, M.; Bonzon, C.; Hugi, A.; Beck, M. Quantum Cascade Laser Frequency Combs. Nanophotonics 2016, 5, 272–291. [Google Scholar] [CrossRef]
- Keilmann, F.; Gohle, C.; Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 2004, 29, 1542–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, B.; Ozawa, A.; Jacquet, P.; Jacquey, M.; Kobayashi, Y.; Udem, T.; Holzwarth, R.; Guelachvili, G.; Hänsch, T.W.; Picqué, N. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 2010, 4, 55–57. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Villares, G.; Hugi, A.; Blaser, S.; Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 2014, 5, 5192. [Google Scholar] [CrossRef]
- Scalari, G.; Faist, J.; Picqué, N. On-chip mid-infrared and THz frequency combs for spectroscopy. Appl. Phys. Lett. 2019, 114, 150401. [Google Scholar] [CrossRef] [Green Version]
- Rösch, M.; Scalari, G.; Villares, G.; Bosco, L.; Beck, M.; Faist, J. On-chip, self-detected terahertz dual-comb source. Appl. Phys. Lett. 2016, 108, 171104. [Google Scholar] [CrossRef] [Green Version]
- Consolino, L.; Nafa, M.; Cappelli, F.; Garrasi, K.; Mezzapesa, F.P.; Li, L.; Davies, A.G.; Linfield, E.H.; Vitiello, M.S.; De Natale, P.; et al. Fully phase-stabilized quantum cascade laser frequency comb. Nat. Commun. 2019, 10, 2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gaspare, A.; Viti, L.; Beere, H.E.; Ritchie, D.D.; Vitiello, M.S. Homogeneous quantum cascade lasers operating as terahertz frequency combs over their entire operational regime. Nanophotonics 2020, 10, 181–186. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, F.; Wu, D.; Slivken, S.; Razeghi, M. Room temperature terahertz semiconductor frequency comb. Nat. Commun. 2019, 10, 2403. [Google Scholar] [CrossRef]
- Smith, T.J.; Broome, A.; Stanley, D.; Westberg, J.; Wysocki, G.; Sengupta, K. A Hybrid THz Imaging System with a 100-Pixel CMOS Imager and a 3.25-3.50 THz Quantum Cascade Laser Frequency Comb. In Proceedings of the ESSCIRC 2019—IEEE 45th European Solid State Circuits Conference (ESSCIRC), Cracow, Poland, 23–26 September 2019. [Google Scholar] [CrossRef]
- Martín-Mateos, P.; Čibiraitė-Lukenskienė, D.; Barreiro, R.; de Dios, C.; Lisauskas, A.; Krozer, V.; Acedo, P. Hyperspectral terahertz imaging with electro-optic dual combs and a FET-based detector. Sci. Rep. 2020, 10, 14429. [Google Scholar] [CrossRef]
- Continuous-Wave Radar. Available online: https://en.wikipedia.org/wiki/Continuous-wave_radar (accessed on 11 June 2021).
- Semenov, A.; Richter, H.; Böttger, U.; Hübers, H.W. Imaging terahertz radar for security applications. Proc. SPIE 2008, 6949, 69402. [Google Scholar] [CrossRef]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H. Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar. IEEE Trans. Microw. Theory Tech. 2008, 56, 2771–2778. [Google Scholar] [CrossRef] [Green Version]
- Am Weg, C.; von Spiegel, W.; Henneberger, R.; Zimmermann, R.; Loeffler, T.; Roskos, H.G. Fast active THz cameras with ranging capabilities. J. Infrared Millim. Terahertz Waves 2009, 30, 1281–1296. [Google Scholar] [CrossRef]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 169–182. [Google Scholar] [CrossRef]
- Friederich, F.; von Spiegel, W.; Bauer, M.; Meng, F.; Thomson, M.D.; Boppel, S.; Lisauskas, A.; Hils, B.; Krozer, V.; Keil, A.; et al. THz active imaging systems with real-time capabilities. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 183–200. [Google Scholar] [CrossRef]
- Ahmed, S.S. Personnel screening with advanced multistatic imaging technology. Proc. SPIE 2013, 8715, 87150B. [Google Scholar] [CrossRef]
- Sheen, D.M.; Bernacki, B.E.; McMakin, D.L. Advanced millimeter-wave security portal imaging techniques. Proc. SPIE 2012, 8259, 82590G. [Google Scholar] [CrossRef]
- Optical Coherence Tomography. Available online: https://en.wikipedia.org/wiki/Optical_coherence_tomography (accessed on 11 June 2021).
- Von Spiegel, W.; am Weg, C.; Henneberger, R.; Zimmermann, R.; Roskos, H.G. Illumination aspects in active terahertz imaging. IEEE Trans. Microw. Theory Tech. 2010, 58, 2008–2013. [Google Scholar] [CrossRef]
- Pätzold, M.; Kahl, M.; Klinkert, T.; Keil, A.; Löffler, T.; Bolívar, P.H.; Kolb, A. Simulation and data-processing framework for hybrid synthetic aperture THz systems including THz-scattering. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 625–634. [Google Scholar] [CrossRef]
- Non-Destructive Testing with Terahertz (3D). Available online: https://www.becker-photonik.de/ (accessed on 11 June 2021).
- Keil, A.; Loeffler, T.; Quast, H.; Krozer, V.; Dall, J.; Kusk, A.; Zhurbenko, V.; Jensen, T.; de Maagt, P. 300 GHz imaging with 8 meter stand-off distance and one-dimensional synthetic image reconstruction. Proc. SPIE 2011, 8022, 80220A. [Google Scholar] [CrossRef]
- García-Rial, F.; Montesano, D.; Gómez, I.; Callejero, C.; Bazus, F.; Grajal, J. Combining commercially available active and passive sensors into a millimeter-wave imager for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 2019, 67, 1167–1183. [Google Scholar] [CrossRef]
- Alonso-del Pino, M.; Jung-Kubiak, C.; Reck, T.; Lee, C.; Chattopadhyay, G. Micromachining for advanced terahertz: Interconnects and packaging techniques at terahertz frequencies. IEEE Microw. Mag. 2020, 21, 18–34. [Google Scholar] [CrossRef]
- Cristofani, E.; Friederich, F.; Wohnsiedler, S.; Matheis, C.; Jonuscheit, J.; Vandewal, M.; Beigang, R. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Opt. Eng. 2014, 53, 031211. [Google Scholar] [CrossRef]
- Dandolo, C.L.K.; Guillet, J.P.; Ma, X.; Fauquet, F.; Roux, M.; Mounaix, P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Opt. Express 2018, 26, 5358–5367. [Google Scholar] [CrossRef]
- Meier, D.; Zech, C.; Baumann, B.; Gashi, B.; Schlechtweg, M.; Kuhn, J.; Rosch, M.; Reindl, L.M. Propagation of millimeter waves in composite materials. IEEE Trans. Antennas Propag. 2020, 68, 3080–3093. [Google Scholar] [CrossRef]
- Ellrich, F.; Bauer, M.; Schreiner, N.; Keil, A.; Pfeiffer, T.; Klier, J.; Weber, S.; Jonuscheit, J.; Friederich, F.; Molter, D. Terahertz quality inspection for automotive and aviation industries. J. Infrared Millim. Terahertz Waves 2020, 41, 470–489. [Google Scholar] [CrossRef] [Green Version]
- Baccouche, B.; Keil, A.; Kahl, M.; Bolivar, P.H.; Loeffler, T.; Jonuscheit, J.; Friederich, F. A sparse array based sub-terahertz imaging system for volume inspection. In Proceedings of the 45th European Microwave Conference, Paris, France, 7–10 September 2015; pp. 438–441. [Google Scholar] [CrossRef]
- Merkle, T.; Meier, D.; Wagner, S.; Tessmann, A.; Kuri, M.; Massler, H.; Leuther, A. Broadband 240-GHz radar for non-destructive testing of composite materials. IEEE J. Solid-State Circuits 2019, 54, 2388–2401. [Google Scholar] [CrossRef]
- Bassli, A.; Blin, S.; Nouvel, P.; Myara, M.; Roux, J.F.; Benbassou, A.; Belkadid, J.; Penarier, A. 3-D imaging of materials at 0.1 THz for inner-defect detection using a frequency-modulated continuous-wave radar. IEEE Trans. Instrum. Meas. 2020, 69, 5843–5852. [Google Scholar] [CrossRef]
- Li, Y.D.; Hu, W.D.; Zhang, X.; Zhao, Y.Z.; Ni, J.Q.; Ligthart, L.P. A non-linear correction method for terahertz LFMCW radar. IEEE Access 2020, 8, 102784–102794. [Google Scholar] [CrossRef]
- Yi, X.; Wang, C.; Chen, X.B.; Wang, J.C.; Grajal, J.; Han, R.N. A 220-to-320-GHz FMCW radar in 65-nm CMOS using a frequency-comb architecture. IEEE J. Solid-State Circuits 2021, 56, 327–339. [Google Scholar] [CrossRef]
- Hu, S.Q.; Shu, C.; Alfadhl, Y.; Chen, X.D. THz sparse periodic array imaging system using compressed sensing. IET Microw. Antennas Propag. 2020, 14, 1157–1161. [Google Scholar] [CrossRef]
- Sadeghi, M.; Tajdini, M.M.; Wig, E.; Rappaport, C.M. Single-frequency fast dielectric characterization of concealed body-worn explosive threats. IEEE Trans. Antennas Propag. 2020, 68, 7541–7548. [Google Scholar] [CrossRef]
- Bi, H.; Zhu, D.Y.; Bi, G.A.; Zhang, B.C.; Hong, W.; Wu, Y.R. FMCW SAR sparse imaging based on approximated observation: An overview on current technologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 13, 4825–4835. [Google Scholar] [CrossRef]
- Appleby, R.; Anderton, R.N.; Price, S.; Salmon, N.A.; Sinclair, G.N.; Coward, P.R.; Barnes, A.R.; Munday, P.D.; Moore, M.; Lettington, A.H.; et al. Mechanically scanned real time passive millimetre wave imaging at 94 GHz. Proc. SPIE 2003, 5077, 379–392. [Google Scholar] [CrossRef]
- Appleby, R.; Robertson, D.A.; Wikner, D. Millimeter wave imaging: A historical review. Proc. SPIE 2017, 10189, 1018902. [Google Scholar] [CrossRef] [Green Version]
- Petkie, D.T.; Casto, C.; De Lucia, F.C.; Murrill, S.R.; Redman, B.; Espinola, R.L.; Franck, C.C.; Jacobs, E.L.; Griffin, S.T.; Halford, C.E.; et al. Active and passive imaging in the THz spectral region: Phenomenology, dynamic range, modes, and illumination. J. Opt. Soc. Am. 2008, 25, 1523–1531. [Google Scholar] [CrossRef] [Green Version]
- Grossman, E.N.; Leong, K.; Mei, X.B.; Deal, W. Low-frequency noise and passive imaging with 670 GHz HEMT low-noise amplifiers. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 749–752. [Google Scholar] [CrossRef]
- Mann, C. Real time passive imaging at 250 GHz for security: Technology and phenomenology. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 14–18 September 2009; pp. 1013–1015. [Google Scholar] [CrossRef]
- Kowalski, M.; Kastek, M.; Palka, N.; Polakowski, H.; Szustakowski, M.; Piszczek, M. Investigations of concealed objects detection in visible, infrared and terahertz ranges. Photonics Lett. Pol. 2013, 5, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, M. Real-time concealed object detection and recognition in passive imaging at 250 GHz. Appl. Opt. 2019, 58, 3134–3140. [Google Scholar] [CrossRef]
- Mann, C. A compact real time passive terahertz imager. Proc. SPIE 2006, 6211, 6211OE. [Google Scholar] [CrossRef]
- Kowalski, M.; Kastek, M.; Polakowski, H.; Palka, N.; Piszczek, M.; Szustakowski, M. Multispectral concealed weapon detection in visible, infrared and terahertz. Proc. SPIE 2014, 9102, 9102OT. [Google Scholar] [CrossRef]
- He, Y.; Hou, L.W.; Tian, Y.l.; Huang, K.; Jiang, J. 340 GHz and 250 GHz Schottky solid-state heterodyne receiver arrays for passive imaging systems. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar] [CrossRef]
- Richards, P.L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994, 76, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Heinz, E.; May, T.; Born, D.; Zieger, G.; Brömel, A.; Anders, S.; Zakosarenko, V.; Krause, T.; Krüger, A.; Schulz, M.; et al. Development of passive submillimeter-wave video imaging systems for security applications. Proc. SPIE 2012, 8544, 854402. [Google Scholar] [CrossRef]
- Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.G.; Schäffel, C. Passive 350 GHz video imaging systems for security apllications. J. Infrared Millim. Terahertz Waves 2015, 36, 879–895. [Google Scholar] [CrossRef]
- Knipper, R.; Brahm, A.; Heinz, E.; May, T.; Notni, G.; Meyer, H.G.; Tünnermann, A.; Popp, J. THz absorption in fabric and its impact on body scanning for security application. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 999–1004. [Google Scholar] [CrossRef]
- Luukanen, A.; Miller, A.J.; Grossman, E.N. Passive hyperspectral terahertz imagery for security screening using a cryogenic microbolometer. Proc. SPIE 2005, 5789, 127–134. [Google Scholar] [CrossRef]
- Grossman, E.; Dietlein, C.; Ala-Laurinaho, J.; Leivo, M.; Gronberg, L.; Gronholm, M.; Lappalainen, P.; Rautiainen, A.; Tamminen, A.; Luukanen, A. Passive terahertz camera for standoff security screening. Appl. Opt. 2010, 49, E106–E120. [Google Scholar] [CrossRef] [PubMed]
- Nemirovsky, Y.; Svetlitza, A.; Brouk, I.; Stolyarova, S. Nanometric CMOS-SOI-NEMS transistor for uncooled THz sensing. IEEE Trans. Electron Devices 2013, 60, 1575–1583. [Google Scholar] [CrossRef]
- Svetlitza, A.; Slavenko, M.; Blank, T.; Brouk, I.; Stolyarova, S.; Nemirovsky, Y. THz measurements and calibration based on a blackbody source. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 347–359. [Google Scholar] [CrossRef]
- Morf, T.; Klein, B.; Despont, M.; Drechsler, U.; Kull, L.; Corcos, D.; Elad, D.; Kaminski, N.; Pfeiffer, U.R.; Hadid, R.A.; et al. Wide bandwidth room-temperature THz imaging array based on antenna-coupled MOSFET bolometer. Sens. Actuators 2014, 215, 96–104. [Google Scholar] [CrossRef]
- Corcos, D.; Kaminski, N.; Shumaker, E.; Markish, O.; Elad, D.; Morf, T.; Drechsler, U.; Saha, W.T.S.; Kull, L.; Wood, K.; et al. Antenna-coupled MOSFET bolometers for uncooled THz sensing. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 902–913. [Google Scholar] [CrossRef]
- Lee, A.W.M.; Qin, Q.; Kumar, S.; Williams, B.S.; Hu, Q. Real-time terahertz imaging over a standoff distance (>25 meters). Appl. Phys. Lett. 2006, 89, 141125. [Google Scholar] [CrossRef] [Green Version]
- Oda, N.; Yoneyama, H.; Sasaki, T.; Sano, M.; Kurashina, S.; Hosako, I.; Sekine, N.; Sudoh, T.; Irie, T. Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays. Proc. SPIE 2008, 6940, 69402Y. [Google Scholar] [CrossRef]
- Oda, N. Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging. Comptes Rendus Phys. 2010, 11, 496–509. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Simoens, F.; Ouvrier-Buffet, J.L.; Meilhan, J.; Coutaz, J.L. Broadband THz uncooled antenna-coupled microbolometer array – Electromagnetic design, simulations and measurements. IEEE Terahertz Sci. Technol. 2012, 2, 299–305. [Google Scholar] [CrossRef]
- Lewis, R.A. A review of terahertz detectors. J. Phys. Appl. Phys. 2019, 52, 433001. [Google Scholar] [CrossRef]
- Dabironezare, S.O.; Hassel, J.; Gandini, F.; Gronberg, L.; Sipola, H.; Vesterinen, V.; Llombart, N. A dual-band focal plane array of kinetic inductance bolometers based on frequency-selective absorbers. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Luomahaara, J.; Sipola, H.; Grönberg, L.; Mäyrä, A.; Aikio, M.; Timofeev, A.; Tappura, K.; Rautiainen, A.; Tamminen, A.; Vesterinen, V.; et al. A passive, fully staring THz video camera based on kinetic inductance bolometer arrays. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 101–108. [Google Scholar] [CrossRef]
- Van Berkel, S.L.; Malotaux, E.S.; van den Bogert, B.; Spirito, M.; Cavallo, D.; Neto, A.; Llombart, N. High resolution passive THz imaging array with polarization reusage in 22 nm CMOS. In Proceedings of the 44TH International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THZ), Paris, France, 1–6 September 2019. [Google Scholar] [CrossRef]
- Malz, S.; Jain, R.; Pfeiffer, U.R. Towards passive imaging with CMOS THz cameras. In Proceedings of the 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016. [Google Scholar] [CrossRef]
- Sun, J.D.; Zhu, Y.F.; Feng, W.; Ding, Q.F.; Qin, H.; Sun, Y.F.; Zhang, Z.P.; Li, X.; Zhang, J.F.; Li, X.X.; et al. Passive terahertz imaging detectors based on antenna-coupled high-electron-mobility transistors. Opt. Express 2020, 28, 4911–4920. [Google Scholar] [CrossRef] [PubMed]
- Čibiraitė Lukenskiene, D.; Ikamas, K.; Lisauskas, T.; Krozer, V.; Roskos, H.G.; Lisauskas, A. Passive detection and imaging of human body radiation using an uncooled field-effect transistor-based THz detector. Sensors 2020, 20, 4087. [Google Scholar] [CrossRef] [PubMed]
- Oda, N.; Kurashina, S.; Miyoshi, M.; Doi, K.; Ishi, T.; Sudou, T.; Morimoto, T.; Goto, H.; Sasaki, T. Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region. J. Infrared Millim. Terahertz Waves 2015, 36, 947–960. [Google Scholar] [CrossRef]
- Dufour, D.; Marchese, L.; Terroux, M.; Oulachgar, H.; Généreux, F.; Doucet, M.; Mercier, L.; Tremblay, B.; Alain, C.; Beaupré, P.; et al. Review of terahertz technology development at INO. J. Infrared Millim. Terahertz Waves 2015, 36, 922–946. [Google Scholar] [CrossRef]
- Nemoto, N.; Kanda, N.; Imai, R.; Konishi, K.; Miyoshi, M.; Kurashina, S.; Sasaki, T.; Oda, N.; Kuwata-Gonokami, M. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 175–182. [Google Scholar] [CrossRef]
- Simoens, F.; Meilhan, J.; Dussopt, L.; Nicolas, J.A.; Monnier, N.; Sicard, G.; Siligaris, A.; Hiberty, B. Uncooled terahertz real-time imaging 2D arrays developed at LETI: Present status and perspectives. Proc. SPIE 2017, 10194, 101942N. [Google Scholar] [CrossRef]
- Meilhan, J.; Ayenew, G.T.; Dussopt, L.; Hamdi, M.; Hamelin, A.; Hiberty, B.; Lalanne-Dera, J.; Minasyan, A.; Redon, O.; Simoens, F. Performance improvements of THz imagers based on uncooled antenna-coupled bolometer. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and TerahertzWaves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar] [CrossRef]
- Kreisler, A.J.; Ladret, R.G.; Jagtap, V.S.; Dégardin, A.F. Y-Ba-Cu-O superconducting hot electron heterodyne mixers: Simulated THz performance for stand-off target detection. In Millimetre Wave and Terahertz Sensors and Technology XII; Salmon, N.A., Gumbmann, F., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 11164, pp. 53–67. [Google Scholar] [CrossRef]
- Ladret, R.; Dégardin, A.; Jagtap, V.; Kreisler, A. THz Mixing with High-TC Hot Electron Bolometers: A Performance Modeling Assessment for Y-Ba-Cu-O Devices. Photonics 2019, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Risacher, C.; Güsten, R.; Stutzki, J.; Hübers, H.W.; Aladro, R.; Bell, A.; Buchbender, C.; Büchel, D.; Csengeri, T.; Duran, C.; et al. The upGREAT dual frequency heterodyne arrays for SOFIA. J. Astron. Instrum. 2018, 7, 1840014. [Google Scholar] [CrossRef] [Green Version]
- Wiedner, M.C.; Mehdi, I.; Baryshev, A.; Belitsky, V.; Desmaris, V.; DiGiorgio, A.; Gallego, J.D.; Gerin, M.; Goldsmith, P.; Helmich, F.; et al. A proposed heterodyne receiver for the origins space telescope. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 558–571. [Google Scholar] [CrossRef]
- Lara-Avila, S.; Danilov, A.; Golubev, D.; He, H.; Kim, K.H.; Yakimova, R.; Lombardi, F.; Bauch, T.; Cherednichenko, S.; Kubatkin, S. Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene. Nat. Astron. 2019, 3, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Glaab, D.; Boppel, S.; Lisauskas, A.; Pfeiffer, U.; Öjefors, E.; Roskos, H.G. Terahertz heterodyne detection with silicon field-effect transistors. Appl. Phys. Lett. 2010, 96, 042106. [Google Scholar] [CrossRef]
- Boppel, S.; Lisauskas, A.; Max, A.; Krozer, V.; Roskos, H.G. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging. Opt. Lett. 2012, 37, 536–538. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, C.; Han, R. A 32-unit 240-GHz heterodyne receiver array in 65-nm CMOS with array-wide phase locking. IEEE J. Solid-State Circuits 2019, 54, 1216–1227. [Google Scholar] [CrossRef]
- Limbacher, B.; Schoenhuber, S.; Wenclawiak, M.; Kainz, M.A.; Andrews, A.M.; Strasser, G.; Darmo, J.; Unterrainer, K. Terahertz optical machine learning for object recognition. APL Photonics 2020, 5, 126103. [Google Scholar] [CrossRef]
- Li, Y.; Hu, W.; Zhang, X.; Xu, Z.; Ni, J.; Ligthart, L.P. Adaptive terahertz image super-resolution with adjustable convolutional neural network. Opt. Express 2020, 28, 22200–22217. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Park, H.; Son, J.h. Machine Learning Techniques for THz Imaging and Time-Domain Spectroscopy. Sensors 2021, 21, 1186. [Google Scholar] [CrossRef]
- Corsetti, S.; Wijesinghe, P.; Poulton, P.B.; Sakata, S.; Vyas, K.; Simon Herrington, C.; Nylk, J.; Gasparoli, F.; Dholakia, K. Widefield light sheet microscopy using an Airy beam combined with deep-learning super-resolution. OSA Contin. 2020, 3, 1068–1083. [Google Scholar] [CrossRef]
- Valensise, C.M.; Giuseppi, A.; Vernuccio, F.; De La Cadena, A.; Cerullo, G.; Polli, D. Removing non-resonant background from CARS spectra via deep learning. APL Photonics 2020, 5, 061305. [Google Scholar] [CrossRef]
- Chattopadhyay, G. Technology, Capabilities, and Performance of Low Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 33–53. [Google Scholar] [CrossRef]
- Virginia Diodes, Inc. Detectors. Available online: https://vadiodes.com/en/products-6/detectors (accessed on 11 June 2021).
- Hinata, K.; Shiraishi, M.; Suzuki, S.; Asada, M.; Sugiyama, H.; Yokoyama, H. Sub-terahertz resonant tunneling diode oscillators with high output power (∼200 µW) using offset-fed slot antenna and high current density. Appl. Phys. Express 2010, 3, 014001. [Google Scholar] [CrossRef]
- Generalov, A.A.; Andersson, M.A.; Yang, X.; Vorobiev, A.; Stake, J. A 400-GHz Graphene FET Detector. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 614–616. [Google Scholar] [CrossRef]
- Shivan, T.; Hossain, M.; Doerner, R.; Yacoub, H.; Johansen, T.K.; Heinrich, W.; Krozer, V. A Highly Linear Dual Stage Amplifier with Beyond 1.75 THz Gain-Bandwidth-Product. IEEE Microw. Wirel. Compon. Lett. 2021, 1309, 1–4. [Google Scholar] [CrossRef]
- Zimmer, T.; Bock, J.; Buchali, F.; Chevalier, P.; Collisi, M.; Debaillie, B.; Deng, M.; Ferrari, P.; Fregonese, S.; Gaquiere, C.; et al. SiGe HBTs and BiCMOS Technology for Present and Future Millimeter-Wave Systems. IEEE J. Microw. 2021, 1, 288–298. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, D.; Son, H.; Kim, D.; Yoo, J.; Yun, J.; Ng, H.J.; Kaynak, M.; Rieh, J.S. Terahertz Signal Source and Receiver Operating Near 600 GHz and Their 3-D Imaging Application. IEEE Trans. Microw. Theory Tech. 2021, 1–14. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, A.; Sengupta, A. A Review of the Concept, Applications and Implementation Issues of Terahertz Spectral Imaging Technique. IETE Tech. Rev. 2021, 1–19. [Google Scholar] [CrossRef]
- Statnikov, K.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Trans. Microw. Theory Tech. 2015, 63, 520–532. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valušis, G.; Lisauskas, A.; Yuan, H.; Knap, W.; Roskos, H.G. Roadmap of Terahertz Imaging 2021. Sensors 2021, 21, 4092. https://doi.org/10.3390/s21124092
Valušis G, Lisauskas A, Yuan H, Knap W, Roskos HG. Roadmap of Terahertz Imaging 2021. Sensors. 2021; 21(12):4092. https://doi.org/10.3390/s21124092
Chicago/Turabian StyleValušis, Gintaras, Alvydas Lisauskas, Hui Yuan, Wojciech Knap, and Hartmut G. Roskos. 2021. "Roadmap of Terahertz Imaging 2021" Sensors 21, no. 12: 4092. https://doi.org/10.3390/s21124092