On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions
Abstract
:1. Introduction
2. Eyetracking
2.1. Research Procedure
2.2. Data Processing
3. Aggregation of Classifiers
4. Experimental Results
4.1. Individual Clssifiers
4.2. Aggregation of Classifiers
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, P.; Ru, H.; Gao, L.; Zhang, X.; Zhou, T.; Tian, Y.; Sun, Y. Neural mechanisms of mental fatigue revisited: New insights from the brain connectome. Engineering 2019, 5, 276–286. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhao, Y.; Ye, P.F.; Zhang, J.; Zou, J.Z. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Syst. Appl. 2017, 85, 279–291. [Google Scholar] [CrossRef]
- Wang, Z.; Hope, R.M.; Wang, Z.; Ji, Q.; Gray, W.D. Cross-subject workload classification with a hierarchical Bayes model. NeuroImage 2012, 59, 64–69. [Google Scholar] [CrossRef]
- Walter, C.; Wolter, P.; Rosenstiel, W.; Bogdan, M.; Spüler, M. Towards cross-subject workload prediction. In Proceedings of the 6th International Brain-Computer Interface Conference, Graz, Austria, 16–21 September 2014. [Google Scholar]
- Thodoroff, P.; Pineau, J.; Lim, A. Learning robust features using deep learning for automatic seizure detection. In Proceedings of the Machine learning for healthcare conference, Los Angeles, CA, USA, 19–20 August 2016; pp. 178–190. [Google Scholar]
- McKendrick, R.; Feest, B.; Harwood, A.; Falcone, B. Theories and methods for labeling cognitive workload: Classification and transfer learning. Front. Hum. Neurosci. 2019, 13, 295. [Google Scholar] [CrossRef]
- Fridman, L.; Reimer, B.; Mehler, B.; Freeman, W.T. Cognitive load estimation in the wild. In Proceedings of the 2018 Chi Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–9. [Google Scholar]
- Appel, T.; Scharinger, C.; Gerjets, P.; Kasneci, E. Cross-subject workload classification using pupil-related measures. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018; pp. 1–8. [Google Scholar]
- Almogbel, M.A.; Dang, A.H.; Kameyama, W. EEG-signals based cognitive workload detection of vehicle driver using deep learning. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Korea, 11–14 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 256–259. [Google Scholar]
- Hefron, R.; Borghetti, B.; Schubert Kabban, C.; Christensen, J.; Estepp, J. Cross-participant EEG-based assessment of cognitive workload using multi-path convolutional recurrent neural networks. Sensors 2018, 18, 1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, J.L.; Ser, J.D.; De Simone, F.; Presta, R.; Collina, S.; Moravek, Z. Cognitive workload classification using eye-tracking and EEG data. In Proceedings of the International Conference on Human-Computer Interaction in Aerospace, Paris, France, 14–16 September 2016; pp. 1–8. [Google Scholar]
- Almogbel, M.A.; Dang, A.H.; Kameyama, W. Cognitive workload detection from raw EEG-signals of vehicle driver using deep learning. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 17–20 February 2019; pp. 1–6. [Google Scholar]
- Zarjam, P.; Epps, J.; Chen, F.; Lovell, N.H. Estimating cognitive workload using wavelet entropy-based features during an arithmetic task. Comput. Biol. Med. 2013, 43, 2186–2195. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Wang, Q.; Hua, C. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Neuropsychologia 2019, 129, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Kobayashi, M. Detecting mental fatigue from eye-tracking data gathered while watching video: Evaluation in younger and older adults. Artif. Intell. Med. 2018, 91, 39–48. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Kodagoda, S.; Lal, S.; Dissanayake, G. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 2010, 58, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Maiorana, E. Deep learning for EEG-based biometric recognition. Neurocomputing 2020, 410, 374–386. [Google Scholar] [CrossRef]
- Hajinoroozi, M.; Mao, Z.; Jung, T.P.; Lin, C.T.; Huang, Y. EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Signal Process. Image Commun. 2016, 47, 549–555. [Google Scholar] [CrossRef]
- Wobrock, D.; Frey, J.; Graeff, D.; De La Rivière, J.B.; Castet, J.; Lotte, F. Continuous mental effort evaluation during 3d object manipulation tasks based on brain and physiological signals. In Proceedings of the IFIP Conference on Human-Computer Interaction, Bamberg, Germany, 14–18 September 2015; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2015; pp. 472–487. [Google Scholar]
- Bozkir, E.; Geisler, D.; Kasneci, E. Person independent, privacy preserving, and real time assessment of cognitive load using eye tracking in a virtual reality setup. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1834–1837. [Google Scholar]
- Zhao, Z.; Wang, C.; Niu, Y.; Shen, L.; Ma, Z.; Wu, L. Adjustable Autonomy for Human-UAVs Collaborative Searching Using Fuzzy Cognitive Maps. In Proceedings of the 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), Xi’an, China, 21–22 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 230–234. [Google Scholar]
- Naqvi, R.A.; Arsalan, M.; Park, K.R. Fuzzy system-based target selection for a NIR camera-based gaze tracker. Sensors 2017, 17, 862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, A.B.; Kor, A.L.; Tawfik, H. Development of a Simulation Experiment to Investigate In-Flight Startle using Fuzzy Cognitive Maps and Pupillometry. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. [Google Scholar]
- Fatimah, B.; Pramanick, D.; Shivashankaran, P. Automatic detection of mental arithmetic task and its difficulty level using EEG signals. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Han, S.Y.; Kwak, N.S.; Oh, T.; Lee, S.W. Classification of pilots’ mental states using a multimodal deep learning network. Biocybern. Biomed. Eng. 2020, 40, 324–336. [Google Scholar] [CrossRef]
- Becerra-Sánchez, P.; Reyes-Munoz, A.; Guerrero-Ibañez, A. Feature selection model based on EEG signals for assessing the cognitive workload in drivers. Sensors 2020, 20, 5881. [Google Scholar] [CrossRef] [PubMed]
- Dell’Agnola, F.; Momeni, N.; Arza, A.; Atienza, D. Cognitive workload monitoring in virtual reality based rescue missions with drones. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 19–24 July 2020; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2015; pp. 397–409. [Google Scholar]
- Chakladar, D.D.; Dey, S.; Roy, P.P.; Iwamura, M. EEG-Based Cognitive State Assessment Using Deep Ensemble Model and Filter Bank Common Spatial Pattern. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4107–4114. [Google Scholar]
- Alsina, C.; Schweizer, B.; Frank, M.J. Associative Functions: Triangular Norms and Copulas; World Scientific: Singapore, 2006. [Google Scholar]
- Karczmarek, P.; Kiersztyn, A.; Pedrycz, W. Generalizations of Aggregation Functions for Face Recognition. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 16–20 June 2019; pp. 182–192. [Google Scholar]
- Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Berlin/Heidelberg, Germany, 2007; Volume 221. [Google Scholar]
- Calvo, T.; Mayor, G.; Mesiar, R. (Eds.) Aggregation Operators: New Trends and Applications; Physica: Amsterdam, The Netherlands, 2012; Volume 97. [Google Scholar]
- Gągolewski, M. Data Fusion: Theory, Methods, and Applications; Institute of Computer Science, Polish Academy of Sciences: Warszawa, Poland, 2015. [Google Scholar]
- Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions (No. 127); Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Mesiar, R.; Kolesárová, A.; Calvo, T.; Komorníková, M. A review of aggregation functions. Fuzzy sets and their extensions: Representation, aggregation and models. Stud. Fuzziness Soft Comput. 2008, 220, 121–144. [Google Scholar]
- Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation functions: Means. Inf. Sci. 2011, 181, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 2011, 181, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 8. [Google Scholar]
- Klement, E.P.; Mesiar, R. (Eds.) Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Yager, R.R.; Kacprzyk, J. (Eds.) The Ordered Weighted Averaging Operators: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Choquet, G. Theory of capacities. Annales de l’institut Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef] [Green Version]
- Grabisch, M. The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 1996, 89, 445–456. [Google Scholar] [CrossRef]
- Bustince, H.; Sanz, J.A.; Lucca, G.; Dimuro, G.P.; Bedregal, B.; Mesiar, R. Pre-aggregation functions: Definition, properties and construction methods. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2016, Hyderabad, India, 7–10 July 2013; pp. 294–300. [Google Scholar]
- Karczmarek, P.; Pedrycz, W.; Kiersztyn, A.; Dolecki, M. A comprehensive experimental comparison of the aggregation techniques for face recognition. Iran. J. Fuzzy Syst. 2019, 16, 1–19. [Google Scholar]
- Lucca, G.; Sanz, J.A.; Dimuro, G.P.; Bedregal, B.; Mesiar, R.; Kolesárová, A.; Bustince, H. The notion of pre-aggregation function. In Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence 2015, Skövde, Sweden, 21–23 September 2015; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2015; pp. 33–41. [Google Scholar]
- Karczmarek, P.; Kiersztyn, A.; Pedrycz, W. Generalized choquet integral for face recognition. Int. J. Fuzzy Syst. 2018, 20, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Dimuro, G.P.; Fernández, J.; Bedregal, B.; Mesiar, R.; Sanz, J.A.; Lucca, G.; Bustince, H. The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions. Inf. Fusion 2020, 57, 27–43. [Google Scholar] [CrossRef]
- Karczmarek, P. Selected Problems of Face Recognition and Decision-Making Theory; Wydawnictwo Politechniki Lubelskiej: Lublin, Poland, 2018. [Google Scholar]
- Boake, C. From the Binet–Simon to the Wechsler–Bellevue: Tracing the history of intelligence testing. J. Clin. Exp. Neuropsychol. 2002, 24, 383–405. [Google Scholar] [CrossRef] [PubMed]
- Pedrycz, W.; Gomide, F. An Introduction to Fuzzy Sets: Analysis and Design; MIT Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Torra, V.; Narukawa, Y. Modeling Decisions: Information Fusion and Aggregation Operators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Stolarsky, K.B. Generalizations of the logarithmic mean. Math. Mag. 1975, 48, 87–92. [Google Scholar] [CrossRef]
ANOVA | Post-Hoc Test | |||
---|---|---|---|---|
Features | p-Value | p-Value Class 1–Class 2 | p-Value Class 1–Class 3 | p-Value Class 2–Class 3 |
response number | <0.001 | <0.001 | <0.001 | <0.001 |
mean response time | <0.001 | <0.001 | <0.001 | 0.69 |
total number of fixations | <0.001 | 0.36 | <0.001 | <0.001 |
standard deviation of fixation duration | 0.002 | 0.003 | 0.008 | 0.95 |
maximum fixation duration | 0.009 | 0.011 | 0.04 | 0.87 |
total number of saccades | <0.001 | 0.56 | <0.001 | <0.001 |
maximum saccade amplitude | 0.002 | 0.41 | 0.001 | 0.046 |
mean saccade amplitude | <0.001 | <0.001 | 0.09 | <0.001 |
total number of blinks | 0.015 | 0.99 | 0.003 | 0.003 |
standard deviation of pupil diameter (left) | 0.005 | 0.016 | 0.012 | 0.99 |
No. | Low | Medium | High |
---|---|---|---|
1 | mean saccade amplitude (1.0) | mean response time (1.0) | response number (1.0) |
2 | mean response time (0.95) | response number (0.65) | total number of fixations (0.95) |
3 | standard deviation of fixation duration (0.6) | mean saccade amplitude (0.63) | total number of saccades (0.95) |
4 | total number of fixations (0.53) | standard deviation of fixation duration (0.62) | mean saccade amplitude (0.22) |
5 | total number of saccades (0.52) | total number of fixations (0.6) | maximum saccade amplitude (0.19) |
6 | response number (0.27) | total number of saccades (0.55) | mean response time (0.18) |
7 | standard deviation of pupil diameter (left) (0.17) | maximum fixation duration (0.28) | maximum fixation duration (0.15) |
8 | maximum fixation duration (0.16) | maximum saccade amplitude (0.15) | total number of blinks (0.1) |
9 | maximum saccade amplitude (0.5) | total number of blinks (0.09) | standard deviation of pupil diameter (left) (0.09) |
10 | total number of blinks (0.1) | standard deviation of pupil diameter (left) (0.05) | standard deviation of fixation duration (0.08) |
Model | Accuracy (%) for 10 Selected Features | Accuracy (%) for All Features |
---|---|---|
SVM(Linear) | 94.75 | 93.11 |
SVM(Quadratic) | 84.47 | 78.28 |
SVM(Cubic) | 92.36 | 89.47 |
Logistic Regression | 96.22 | 94.67 |
kNN | 93.78 | 89.61 |
Decision Tree | 90.39 | 90.11 |
Random Forest | 96.22 | 94.89 |
MLP | 93.53 | 89.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorowska, M.; Karczmarek, P.; Plechawska-Wójcik, M.; Tokovarov, M. On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions. Sensors 2021, 21, 4542. https://doi.org/10.3390/s21134542
Kaczorowska M, Karczmarek P, Plechawska-Wójcik M, Tokovarov M. On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions. Sensors. 2021; 21(13):4542. https://doi.org/10.3390/s21134542
Chicago/Turabian StyleKaczorowska, Monika, Paweł Karczmarek, Małgorzata Plechawska-Wójcik, and Mikhail Tokovarov. 2021. "On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions" Sensors 21, no. 13: 4542. https://doi.org/10.3390/s21134542
APA StyleKaczorowska, M., Karczmarek, P., Plechawska-Wójcik, M., & Tokovarov, M. (2021). On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions. Sensors, 21(13), 4542. https://doi.org/10.3390/s21134542