Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS)
Abstract
:1. Introduction
1.1. IMS Technique
1.2. DMS Technique
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oxley, J.C.; Smith, J.L.; Brady, J.; Naik, S. Determination of urea nitrate and guanidine nitrate vapor pressures by isothermal thermogravimetry. Propellants Explos. Pyrotech. 2010, 35, 278–283. [Google Scholar] [CrossRef]
- Damour, P.; Freedman, A.; Wormhoudt, J. Knudsen effusion measurement of organic peroxide vapor pressures. Propellants Explos. Pyrotech. 2010, 35, 514–520. [Google Scholar] [CrossRef]
- Menzies, A.W.C. The explanation of an apparent anomaly outstanding in the results of measurement of dissociation pressures. J. Am. Chem. Soc. 1920, 42, 1951–1956. [Google Scholar] [CrossRef] [Green Version]
- Oxley, J.C.; Smith, J.L.; Luo, W.; Brady, J. Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos. Pyrotech. 2009, 34, 539–543. [Google Scholar] [CrossRef]
- Oxley, J.C.; Smith, J.L.; Shinde, K.; Moran, J. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos. Pyrotech. 2005, 30, 127–130. [Google Scholar] [CrossRef]
- Takada, Y.; Nagano, H.; Suzuki, Y.; Sugiyama, M.; Nakajima, E.; Hashimoto, Y.; Sakairi, M. High-throughput walk through detection portal for counter terrorism: Detection of triacetone triperoxide (TATP) vapor by atmospheric-pressure chemical ionization ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2448–2452. [Google Scholar] [CrossRef] [PubMed]
- Giordano, C.B.; Lubrano, A.L.; Field, C.R.; Collins, G.E. Dynamic headspace generation and quantitation of triacetone triperoxide vapor. J. Chromatogr. A 2014, 1331, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Mbah, J.; Knott, D.; Steward, S. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization. Talanta 2014, 129, 586–593. [Google Scholar] [CrossRef]
- Egorshev, V.Y.; Sinditskii, V.P.; Smirnov, S.P. A comparative study on two explosive acetone peroxides. Thermochim. Acta 2013, 574, 154–161. [Google Scholar] [CrossRef]
- DeGreeff, L.E.; Cerreta, M.M.; Katilie, C.J. Variation in the headspace of bulk hexamethylene triperoxide diamine (HMTD) with time; environment; and formulation. Forensic Chem. 2017, 4, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Aernecke, M.J.; Mendum, T.; Geurtsen, G.; Ostrinskaya, A.; Kunz, R.R. Vapor pressure of hexamethylene triperoxide diamine (HMTD) estimated using secondary electrospray ionization mass spectrometry. J. Phys. Chem. A 2015, 119, 11514–11522. [Google Scholar] [CrossRef]
- Ewing, R.G.; Waltman, M.J.; Atkinson, D.A.; Grate, J.W.; Hotchkiss, P.J. The vapor pressure of explosives. Trends Anal. Chem. 2013, 42, 35–48. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Vogel, M.; Karst, U. Recent methods for the determination of peroxide-based explosives. Anal. Bioanal. Chem. 2006, 386, 559–565. [Google Scholar] [CrossRef]
- Vodochodský, O.; Jalový, Z.; Matyáš, R.; Novotná, M. Determination of triacetone triperoxide and hexamethylene triperoxide diamine in various matrices using infrared spectroscopy. Appl. Spectrosc. 2019, 73, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Craats, A.M.; Kok, E.M.; Bruyn, P.C. Trace analysis of peroxide explosives by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC-APCI-MS/MS) for forensic applications. J. Forensic Sci. 2004, 49, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Ladbeck, R.; Kolla, P.; Karst, U. Trace analysis of peroxide-based explosives. Anal. Chem. 2003, 75, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.; Obaidly, H.S.A.A.; Khalil, S.E. Development and validation of fast liquid chromatography high-resolution mass spectrometric (LC-APCI-Q ToF-MS) methods for the analysis of hexamethylene triperoxide diamine (HMTD)and triacetone triperoxide (TATP). Forensic Chem. 2018, 10, 5–14. [Google Scholar] [CrossRef]
- Buttigieg, G.A.; Knight, A.K.; Denson, S.; Pommier, C.; Denton, M.B. Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry. Forensic Sci. Int. 2003, 135, 53–59. [Google Scholar] [CrossRef]
- Rasanen, R.M.; Nousiainen, M.; Perakorpi, K.; Sillanpaa, M.; Polari, L.; Anttalainen, O.; Utriainen, M. Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography–mass spectrometry. Anal. Chim. Acta 2008, 623, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Marr, A.J.; Groves, D.M. Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int. J. Ion Mobil. Spectrom. 2003, 6, 59–61. [Google Scholar]
- Oxley, J.C.; Smith, J.L.; Kirschenbaum, L.J.; Marimganti, S.; Vadlamannati, S. Detection of explosives in hair using ion mobility spectrometry. J. Forensic Sci. 2008, 53, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Borsdorf, H.; Eiceman, G.A. Ion mobility spectrometry: Principles and applications. Appl. Spectrosc. Rev. 2006, 41, 323–375. [Google Scholar] [CrossRef]
- Stach, J.; Baumbach, J.I. Ion mobility spectrometry—basic elements and applications. Int. J. Ion Mobil. Spectrom. 2002, 5, 1–21. [Google Scholar]
- Eiceman, G.A. Ion-mobility spectrometry as a fast monitor of chemical composition. Trends Anal. Chem. 2002, 21, 259–275. [Google Scholar] [CrossRef]
- Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, I.; Liedtke, S. On the potential of ion mobility spectrometry coupled to GC pre-separation–A tutorial. Anal. Chim. Acta 2018, 1024, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Sorribes-Soriano, A.; de la Guardia, M.; Esteve-Turrillas, F.A.; Armenta, S. Trace analysis by ion mobility spectrometry: From conventional to smart sample preconcentration methods. A review. Anal. Chim. Acta 2018, 1026, 37–50. [Google Scholar] [CrossRef]
- Kaur-Atwal, G.; O’Connor, G.; Aksenov, A.A.; Bocos-Bintintan, V.; Paul Thomas, C.L.; Creaser, C.S. Chemical standards for ion mobility spectrometry: A review. Int. J. Mass Spectrom. 2009, 12, 1–14. [Google Scholar] [CrossRef]
- Kolakowski, B.M.; Mester, Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 2007, 132, 842–864. [Google Scholar] [CrossRef]
- Jakubowska, M.; Maziejuk, M.; Ceremuga, M.; Siczek, J.; Gallewicz, W. Ceramic DMS—type detector. Int. J. Ion Mobil. Spectrom. 2012, 15, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Pathak, P.; Shvartsburg, A.A. Low-Field Differential Ion Mobility Spectrometry of Dipole-Aligned Macromolecules. Anal. Chem. 2020, 92, 13855–13863. [Google Scholar] [CrossRef]
- Winter, D.L.; Wilkins, M.R.; Donald, W.A. Differential ion mobility–mass spectrometry for detailed analysis of the proteome. Trends Biotechnol. 2019, 37, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Maziejuk, M.; Szczurek, A.; Maciejewska, M.; Pietrucha, T.; Szyposzyńska, M. Determination of benzene; toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression. Talanta 2016, 152, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Szczurek, A.; Maziejuk, M.; Maciejewska, M.; Pietrucha, T.; Sikora, T. BTX compounds recognition in humid air using differential ion mobility spectrometry combined with a classifier. Sens. Actuators B Chem. 2017, 240, 1237–1244. [Google Scholar] [CrossRef]
- Krylov, E.V.; Coy, S.L.; Nazarov, E.G. Temperature effects in differential mobility spectrometry. Int. J. Mass Spectrom. 2009, 279, 119–125. [Google Scholar] [CrossRef]
- Guevremont, R. High-field asymmetric waveform ion mobility spectrometry: A new tool for mass spectrometry. J. Chromatogr. A 2004, 1058, 3–19. [Google Scholar] [CrossRef]
- Miller, R.A.; Nazarov, E.G.; Eiceman, G.A.; King, A.T. A MEMS radio-frequency ion mobility spectrometer for chemical vapour detection. Sens. Actuator A Phys. 2001, 91, 307–318. [Google Scholar] [CrossRef]
- Shen, C.; Li, J.-Q.; Xu, G.; Wang, H.-M.; Zheng, P.-C.; Li, H.; Wang, Y.-J.; Chu, Y.-N. Proton Transfer Reaction Mass Spectrometry of Triacetone Triperoxide. Chem. J. Chin. Univ. 2009, 30, 274–278. [Google Scholar]
- Wróblewski, T.; Ziemczonek, L.; Szerement, K.; Karwasz, G. Proton affinities of simple organic compounds. Czechoslov. J. Phys. 2006, 56, B1110–B1115. [Google Scholar] [CrossRef]
- Canaval, E.; Hyttinen, N.; Schmidbauer, B.; Fischer, L.; Hansel, A. NH4+ Association and Proton Transfer Reactions with a Series of Organic Molecules. Front. Chem. 2019, 7, 191. [Google Scholar] [CrossRef]
Substance | Positive Ion | CV (Td) |
---|---|---|
TATP 99% purity | RIP | −1.3 |
monomer | −0.6 | |
Dimer | 0.1 | |
DADP 99% purity | RIP | −1.3 |
monomer | −0.6 | |
dimer | 0.1 | |
TATP + DADP (50 ppb NH3) | RIP | −1.3 |
acetone monomer | −0.9 | |
acetone dimer | −0.2 | |
TATP + DADP | −0.7 | |
TATP dimer | 0.2 | |
TATP + DADP (200 ppb NH3) | RIP | −1.3 |
acetone monomer | −1.0 | |
acetone dimer | −0.2 | |
TATP + DADP monomer | −0.6 | |
TATP dimer | 0.1 | |
HMTD | RIP | −1.3 |
HMTD monomer | −1.0 | |
HMTD dimer | −0.5 |
Positive Ion | Time (ms) |
---|---|
RIP (NH3) | 9.3 |
DADP monomer ion | 9.7 |
TATP monomer ion | 11.2 |
TATP + DADP dimer ion | 13.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maziejuk, M.; Szyposzyńska, M.; Spławska, A.; Wiśnik-Sawka, M.; Ceremuga, M. Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS). Sensors 2021, 21, 4545. https://doi.org/10.3390/s21134545
Maziejuk M, Szyposzyńska M, Spławska A, Wiśnik-Sawka M, Ceremuga M. Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS). Sensors. 2021; 21(13):4545. https://doi.org/10.3390/s21134545
Chicago/Turabian StyleMaziejuk, Mirosław, Monika Szyposzyńska, Aleksandra Spławska, Monika Wiśnik-Sawka, and Michał Ceremuga. 2021. "Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS)" Sensors 21, no. 13: 4545. https://doi.org/10.3390/s21134545
APA StyleMaziejuk, M., Szyposzyńska, M., Spławska, A., Wiśnik-Sawka, M., & Ceremuga, M. (2021). Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS). Sensors, 21(13), 4545. https://doi.org/10.3390/s21134545