Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement System
2.3. Running Track
2.4. Procedure
2.5. Data Processing
3. Results
3.1. Running Speed, Pacing, and Cycling Intensity
3.2. Joint Kinematics
3.3. Trunk Joints
3.4. Hip
3.5. Knee
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cejuela, R.; Cala, A.; Perez-Turpin, J.A.; Villa, J.G.; Cortell, J.M.; Chinchilla, J.J. Temporal activity in particular segments and transitions in the olympic triathlon. J. Hum. Kinet. 2013, 36, 87–95. [Google Scholar] [CrossRef]
- Walsh, J.A. The rise of elite short-course triathlon re-emphasises the necessity to transition efficiently from cycling to running. Sports 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Weich, C.; Jensen, R.L.; Vieten, M. Triathlon transition study: Quantifying differences in running movement pattern and precision after bike-run transition. Sports Biomech. 2019, 18, 215–228. [Google Scholar] [CrossRef]
- Walsh, J.A.; Stamenkovic, A.; Lepers, R.; Peoples, G.; Stapley, P.J. Neuromuscular and physiological variables evolve independently when running immediately after cycling. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2015, 25, 887–893. [Google Scholar] [CrossRef]
- Millet, G.P.; Vleck, V.E. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: Review and practical recommendations for training. Br. J. Sports Med. 2000, 34, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Folland, J.P.; Allen, S.J.; Black, M.I.; Handsaker, J.C.; Forrester, S.E. Running technique is an important component of running economy and performance. Med. Sci. Sports Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Vicenzino, B.; Hodges, R.; Dowlan, S.; Hahn, A.; Milner, T. Cycling impairs neuromuscular control during running in triathletes: Implications for performance, injury and intervention. J. Sci. Med. Sport 2009, 12, S61. [Google Scholar] [CrossRef]
- Bonacci, J.; Saunders, P.U.; Alexander, M.; Blanch, P.; Vicenzino, B. Neuromuscular control and running economy is preserved in elite international triathletes after cycling. Sports Biomech. 2011, 10, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Bini, R.; Hume, P.; Croft, J. Cyclists and triathletes have different body positions on the bicycle. Eur. J. Sport Sci. 2014, 14, S109–S115. [Google Scholar] [CrossRef]
- ITU. ITU Competition Rules; ITU: Geneva, Switzerland, 2019. [Google Scholar]
- Millet, G.P.; Millet, G.Y.; Hofmann, M.D.; Candau, R.B. Alterations in running economy and mechanics after maximal cycling in triathletes: Influence of performance level. Int. J. Sports Med. 2000, 21, 127–132. [Google Scholar] [CrossRef]
- Riley, P.O.; Dicharry, J.; Franz, J.; Della Croce, U.; Wilder, R.P.; Kerrigan, D.C. A kinematics and kinetic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 2008, 40, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, J.C.; Charteris, J. A kinematic study of long-term habituation to treadmill walking. Ergonomics 1981, 24, 531–542. [Google Scholar] [CrossRef]
- Nigg, B.M.; De Boer, R.W.; Fisher, V. A kinematic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 1995, 27, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Fullenkamp, A.M.; Tolusso, D.V.; Laurent, C.M.; Campbell, B.M.; Cripps, A.E. A comparison of both motorized and nonmotorized treadmill gait kinematics to overground locomotion. J. Sport Rehabil. 2018, 27, 357–363. [Google Scholar] [CrossRef]
- Wank, V.; Frick, U.; Schmidtbleicher, D. Kinematics and electromyography of lower limb muscles in overground and treadmill running. Int. J. Sports Med. 1998, 19, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Khurelbaatar, T.; Kim, K.; Lee, S.; Kim, Y.H. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait Posture 2015, 42, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [Green Version]
- Van der Straaten, R.; De Baets, L.; Jonkers, I.; Timmermans, A. Mobile assessment of the lower limb kinematics in healthy persons and in persons with degenerative knee disorders: A systematic review. Gait Posture 2018, 59, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.T.; Novak, A.C.; Brouwer, B.; Li, Q. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiol. Meas. 2013, 34, N63–N69. [Google Scholar] [CrossRef] [PubMed]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Mavor, M.P.; Ross, G.B.; Clouthier, A.L.; Karakolis, T.; Graham, R.B. Validation of an IMU Suit for Military-Based Tasks. Sensors 2020, 20, 4280. [Google Scholar] [CrossRef] [PubMed]
- Hausswirth, C.; Bigard, A.X.; Guezennec, C.Y. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int. J. Sports Med. 1997, 18, 330–339. [Google Scholar] [CrossRef]
- Quigley, E.J.; Richards, J.G. The effects of cycling on running mechanics. J. Appl. Biomech. 1996, 12, 470–479. [Google Scholar] [CrossRef]
- Chapman, A.R.; Vicenzino, B.; Blanch, P.; Dowlan, S.; Hodges, P.W. Does cycling effect motor coordination of the leg during running in elite triathletes? J. Sci Med. Sport 2008, 11, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Joch, M.; Döhring, F.R.; Maurer, L.K.; Müller, H. Inference statistical analysis of continuous data based on confidence bands—Traditional and new approaches. Behav. Res. Methods 2019, 51, 1244–1257. [Google Scholar] [CrossRef]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 2013, 46, 2394–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pataky, T.; Vanrenterghem, J.; Robinson, M. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. J. Biomech. 2015, 48, 1277–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- XsensTechnologies. Xsens MVN User Manual; Technical Report Document MV0319P, Revision U; Xsens Technologies B.V.: Enschede, The Netherlands, 2017. [Google Scholar]
- Jensen, R.L.; Ewers, B.J.; Cunniffe, B.; Phelan, B.; Harrison, A.J.; Shafat, A. Impact of Seated and Standing Bicycle Riding Position on Subsequent Running Performance. Int. J. Exerc. Sci. 2008, 1, 177–187. [Google Scholar] [PubMed]
- Bonacci, J.; Green, D.; Saunders, P.U.; Blanch, P.; Franettovich, M.; Chapman, A.R.; Vicenzino, B. Change in running kinematics after cycling are related to alterations in running economy in triathletes. J. Sci. Med. Sport 2010, 13, 460–464. [Google Scholar] [CrossRef]
- Chapman, A.R.; Hodges, P.W.; Briggs, A.M.; Stapley, P.J.; Vicenzino, B. Neuromuscular control and exercise-related leg pain in triathletes. Med. Sci. Sports Exerc. 2010, 42, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Rendos, N.K.; Harrison, B.C.; Dicharry, J.M.; Sauer, L.D.; Hart, J.M. Sagittal plane kinematics during the transition run in triathletes. J. Sci. Med. Sport 2013, 16, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Pollock, D.S.G. Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press: London, UK, 1999. [Google Scholar]
- Straaten, R.V.; Timmermans, A.; Bruijnes, A.; Vanwanseele, B.; Jonkers, I.; Baets, L. Reliability of 3D lower extremity movement analysis by means of inertial sensor technology during transitional tasks. Sensors 2018, 18, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Straaten, R.; Bruijnes, A.; Vanwanseele, B.; Jonkers, I.; De Baets, L.; Timmermans, A. Reliability and agreement of 3D trunk and lower extremity movement analysis by means of inertial sensor technology for unipodal and bipodal tasks. Sensors 2019, 19, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiden, T.; Burnett, A. The effect of cycling on muscle activation in the running leg of an Olympic distance triathlon. Sports Biomech. 2003, 2, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Enders, H.; Maurer, C.; Baltich, J.; Nigg, B.M. Task-oriented control of muscle coordination during cycling. Med. Sci. Sports Exerc. 2013, 45, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; von Tscharner, V.; Nigg, B.M. Speed-dependent variation in the Piper rhythm. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2013, 23, 673–678. [Google Scholar] [CrossRef]
- Hoitz, F.; Vienneau, J.; Nigg, B.M. Influence of running shoes on muscle activity. PLoS ONE 2020, 15, e0239852. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, J.; Blanch, P.; Chapman, A.R.; Vicenzino, B. Altered movement patterns but not muscle recruitment in moderately trained triathletes during running after cycling. J. Sports Sci. 2010, 28, 1477–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millour, G.; Janson, L.; Duc, S.; Puel, F.; Bertucci, W. Effect of cycling shoe cleat position on biomechanical and physiological responses during cycling and subsequent running parts of a simulated Sprint triathlon: A pilot study. J. Sci. Cycl. 2020, 9, 57–70. [Google Scholar] [CrossRef]
- Hug, F.; Dorel, S. Electromyographic analysis of pedaling: A review. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2009, 19, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, D.J.S.; Weinrauch, P. The role of a bike fit in cyclists with hip pain. A clinical commentary. Int. J. Sports Phys. Ther. 2019, 14, 468–486. [Google Scholar] [CrossRef] [PubMed]
- Hug, F.; Vogel, C.; Tucker, K.; Dorel, S.; Deschamps, T.; le Carpentier, É.; Lacourpaille, L. Individuals have unique muscle activation signatures as revealed during gait and pedaling. J. Appl. Physiol. 2019, 127, 1165–1174. [Google Scholar] [CrossRef]
- Hue, O.; Le Gallais, D.; Chollet, D.; Boussana, A.; Préfaut, C. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, J.S.; Palmer, B.M. Acute effects of cycling on running step length and step frequency. J. Strength Cond. Res. 2000, 14, 97–101. [Google Scholar]
- Chun, Y.; Bailey, J.P.; Kim, J.; Lee, S.C.; Lee, S.Y. Sex and Limb Differences in Lower Extremity Alignment and Kinematics during Drop Vertical Jumps. Int. J. Environ. Res. Public Health 2021, 18, 3748. [Google Scholar] [CrossRef]
- Semciw, A.; Neate, R.; Pizzari, T. Running related gluteus medius function in health and injury: A systematic review with meta-analysis. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2016, 30, 98–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonacci, J.; Green, D.; Saunders, P.U.; Franettovich, M.; Blanch, P.; Vicenzino, B. Plyometric training as an intervention to correct altered neuromotor control during running after cycling in triathletes: A preliminary randomised controlled trial. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2011, 12, 15–21. [Google Scholar] [CrossRef]
Mean Velocity (km/h) | Mean Stride Length (m) | Mean Frequency (Steps Per Minute) | Analyzed Running Distance | |
---|---|---|---|---|
Warm-Up Run | 12.77 ± 0.55 | 2.52 ± 0.16 | 84.63 ± 17.19 | 25.21 ± 1.56 |
Transition Run | 12.75 ± 0.69 | 2.50 ± 0.22 | 85.36 ± 19.82 | 24.98 ± 2.25 |
p-value | 0.91 | 0.53 | 0.07 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraeulin, L.; Maurer-Grubinger, C.; Holzgreve, F.; Groneberg, D.A.; Ohlendorf, D. Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions. Sensors 2021, 21, 4869. https://doi.org/10.3390/s21144869
Fraeulin L, Maurer-Grubinger C, Holzgreve F, Groneberg DA, Ohlendorf D. Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions. Sensors. 2021; 21(14):4869. https://doi.org/10.3390/s21144869
Chicago/Turabian StyleFraeulin, Laura, Christian Maurer-Grubinger, Fabian Holzgreve, David A. Groneberg, and Daniela Ohlendorf. 2021. "Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions" Sensors 21, no. 14: 4869. https://doi.org/10.3390/s21144869
APA StyleFraeulin, L., Maurer-Grubinger, C., Holzgreve, F., Groneberg, D. A., & Ohlendorf, D. (2021). Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions. Sensors, 21(14), 4869. https://doi.org/10.3390/s21144869