A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
Abstract
:1. Introduction
2. Setup and Simulation Environment
2.1. Simulation Scenarios
2.2. Simulation Settings
3. The Experimental Results
3.1. Packet Delivery Ratio
3.2. Average End-to-End Message Latency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenney, J.B. Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- Seo, H.; Lee, K.D.; Yasukawa, S.; Peng, Y.; Sartori, P. LTE evolution for vehicle-to-everything services. IEEE Commun. Mag. 2016, 54, 22–28. [Google Scholar] [CrossRef]
- Klapez, M.; Grazia, C.A.; Casoni, M. Application-level performance of ieee 802.11 p in safety-related v2x field trials. IEEE Internet Things J. 2020, 7, 3850–3860. [Google Scholar] [CrossRef]
- Lyu, F.; Zhu, H.; Cheng, N.; Zhou, H.; Xu, W.; Li, M.; Shen, X. Characterizing urban vehicle-to-vehicle communications for reliable safety applications. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2586–2602. [Google Scholar] [CrossRef] [Green Version]
- Barranco, A.C.; Gálvez, J.A.Y.; Armijo, J.A.; Aguayo-Torres, M.C.; Sicilia, J.C.R.; Gómez, G. Overview of LTE for Vehicular Communications. Wirel. Pers. Commun. 2020, 113, 1471–1494. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, J.; Hu, J.; Li, Y.; Lin, L.; Shi, Y.; Li, C. The performance comparison of LTE-V2X and IEEE 802.11 p. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- Bey, T.; Tewolde, G. Evaluation of DSRC and LTE for V2X. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 1032–1035. [Google Scholar]
- Karoui, M.; Freitas, A.; Chalhoub, G. Performance comparison between LTE-V2X and ITS-G5 under realistic urban scenarios. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–7. [Google Scholar]
- Nguyen, T.V.; Shailesh, P.; Sudhir, B.; Kapil, G.; Jiang, L.; Wu, Z.; Malladi, D.; Li, J. A comparison of cellular vehicle-to-everything and dedicated short range communication. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Turin, Italy, 27–29 November 2017; pp. 101–108. [Google Scholar]
- Mir, Z.H.; Filali, F. On the performance comparison between IEEE 802.11 p and LTE-based vehicular networks. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5. [Google Scholar]
- Wang, M.; Winbjork, M.; Zhang, Z.; Blasco, R.; Do, H.; Sorrentino, S.; Belleschi, M.; Zang, Y. Comparison of LTE and DSRC-based connectivity for intelligent transportation systems. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Molina-Masegosa, R.; Gozalvez, J.; Sepulcre, M. Comparison of IEEE 802.11 p and LTE-V2X: An evaluation with periodic and aperiodic messages of constant and variable size. IEEE Access 2020, 8, 121526–121548. [Google Scholar] [CrossRef]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wießner, E. Microscopic Traffic Simulation using SUMO. In Proceedings of the The 21st IEEE International Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar]
- OMNeT++ Discrete Event Simulator. Available online: https://omnetpp.org/ (accessed on 10 May 2021).
- Sommer, C.; German, R.; Dressler, F. Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Trans. Mob. Comput. (TMC) 2011, 10, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Virdis, A.; Stea, G.; Nardini, G. Simulating LTE/LTE-Advanced Networks with SimuLTE. In Simulation and Modeling Methodologies, Technologies and Applications; Obaidat, M.S., Ören, T., Kacprzyk, J., Filipe, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 83–105. [Google Scholar]
- INET Framework. Available online: https://inet.omnetpp.org (accessed on 10 May 2021).
- 3rd Generation Partnership Project. 3GPP TS 36.101. Evolved Universal Terrestrial Radio Access (E-UTRA). User Equipment (UE) Radio Transmission and Reception; ETSI, Release 11 (V11.5.0). 2021. Available online: https://www.arib.or.jp/english/html/overview/doc/STD-T104v2_10/5_Appendix/Rel11/36/36101-b50.pdf (accessed on 27 July 2021).
- 3rd Generation Partnership Project. 3GPP TS 36.300. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN). Overall Description; Stage 2, Release 16 V16.0.0. December 2019. Available online: https://www.etsi.org/deliver/etsi_ts/136300_136399/136300/09.04.00_60/ts_136300v090400p.pdf (accessed on 27 July 2021).
- IEEE. IEEE Std 802.11p-2010. In IEEE Standard for Information Technology Local and Metropolitan Area Networks Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Krauß, S. Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle Dynamics. 1998. Available online: https://www.osti.gov/etdeweb/biblio/627062 (accessed on 27 July 2021).
- Mueck, M.; Karls, I. Networking Vehicles to Everything; De|G Press: Berlin, Germany; Boston, MA, USA, 2018; Available online: https://www.degruyter.com/document/doi/10.1515/9781501507243/html (accessed on 27 July 2021).
Parameter | Value |
---|---|
Traffic intensity | 250, 500, 750, 1000, 1250, 1500 vehicles per hour |
Message generation frequency | 2, 4, 6, 8, 10 Hz |
Communication perimeter | 200, 400, 600, 800, 1000, 1200, 1400 m |
Parameter | Value |
---|---|
Application protocol | CAM-like periodic fixed-length message exchange service |
Transport protocol | UDP |
Message length | 300 bytes (including a security header) |
Simulation length | 600 s |
Number of repetitions | 10 |
Parameter | Value |
---|---|
Frequency band | 2100 MHz |
Channel bandwidth | 10 MHz |
Transmit power | 40 dBm |
Max. HARQ Retransmission | 3 |
eNodeB height | 25 metres |
Thermal noise | −104.5 dBm |
eNodeB antenna gain | 18 dBi |
UE antenna gain | 0 dBi |
eNodeB noise figure | 5 dB |
UE noise figure | 7 dB |
Cable loss | 2 dB |
Number of fading paths (JAKES) | 6 |
Parameter | Value |
---|---|
Carrier frequency | 5900 MHz |
Channel bandwidth | 10 MHz |
Data rate | 6 Mbps |
Transmit power | 20 dBm |
Path loss model | Two Ray Interference |
TX antenna gain | 0 dBi |
RX antenna gain | 0 dBi |
V2I Service | DSRC | LTE-Infrastructural | LTE-D2D |
---|---|---|---|
Low-frequency (1–2 Hz), low-latency (<100 milliseconds) services | |||
Slow and stationary vehicle warning | ✓ | ✓– up to 600 m & 1000 vehicles per hour | ✕ |
Weather condition warnings | ✓ | ✓– up to 600 m & 1000 vehicles per hour | ✕ |
Intersection management | ✓ | ✓– up to 600 m & 1000 vehicles per hour | ✕ |
Low-frequency (1–2 Hz), high-latency (<500 milliseconds) services | |||
Point of interest notification | ✓ | ✓– up to 600 m | ✕ |
Local electronic commerce | ✓ | ✓– up to 600 m | ✕ |
Media upload | ✓ | ✓– up to 600 m | ✕ |
Map updates | ✓ | ✓– up to 600 m | ✕ |
Cooperative flexible lane change | ✓ | ✓– up to 600 m | ✕ |
High-frequency (10 Hz), low-latency (<100 milliseconds) services | |||
Electronic emergency brake light | ✓ | ✕ | ✕ |
Emergency vehicle approaching | ✓ | ✕ | ✕ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, T.; Sevcik, L.; Pocta, P.; Dado, M. A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios. Sensors 2021, 21, 5095. https://doi.org/10.3390/s21155095
Petrov T, Sevcik L, Pocta P, Dado M. A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios. Sensors. 2021; 21(15):5095. https://doi.org/10.3390/s21155095
Chicago/Turabian StylePetrov, Tibor, Lukas Sevcik, Peter Pocta, and Milan Dado. 2021. "A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios" Sensors 21, no. 15: 5095. https://doi.org/10.3390/s21155095
APA StylePetrov, T., Sevcik, L., Pocta, P., & Dado, M. (2021). A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios. Sensors, 21(15), 5095. https://doi.org/10.3390/s21155095