Comparison of Two Electronic Physical Performance Batteries by Measurement Time and Sarcopenia Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. eSPPB Protocol and Time Stamp Data
2.3. Sarcopenia Assessments
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Test Times
3.3. eSPPB, eQPPB, and Sarcopenia Classification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- High, K.P.; Zieman, S.; Gurwitz, J.; Hill, C.; Lai, J.; Robinson, T.; Schonberg, M.; Whitson, H. Use of Functional Assessment to Define Therapeutic Goals and Treatment. J. Am. Geriatr. Soc. 2019, 67, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Afilalo, J.; Shi, S.M.; Popma, J.J.; Khabbaz, K.R.; Laham, R.J.; Grodstein, F.; Guibone, K.; Lux, E.; Lipsitz, L.A. Evaluation of Changes in Functional Status in the Year After Aortic Valve Replacement. JAMA Intern. Med. 2019, 179, 383–391. [Google Scholar] [CrossRef]
- Jung, H.-W.; Jang, I.-Y.; Lee, C.K.; Yu, S.S.; Hwang, J.K.; Jeon, C.; Lee, Y.S.; Lee, E. Usual gait speed is associated with frailty status, institutionalization, and mortality in community-dwelling rural older adults: A longitudinal analysis of the Aging Study of Pyeongchang Rural Area. Clin. Interv. Aging 2018, 13, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; Di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.-W. Visualizing Domains of Comprehensive Geriatric Assessments to Grasp Frailty Spectrum in Older Adults with a Radar Chart. Ann. Geriatr. Med. Res. 2020, 24, 55–56. [Google Scholar] [CrossRef]
- Jung, H.; Kang, M.-G.; Choi, J.; Yoon, S.; Kim, K.-I.; Kim, K.; Kim, C. Simple Method of Screening for Frailty in Older Adults Using a Chronometer and Tape Measure in Clinic. J. Am. Geriatr. Soc. 2018, 66, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Jang, I.-Y.; Lee, H.Y.; Lee, E. The 50th Anniversary Committee of Korean Geriatrics Society Geriatrics Fact Sheet in Korea 2018 From National Statistics. Ann. Geriatr. Med. Res. 2019, 23, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. New Engl. J. Med. 1995, 332, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Wallace, D.; Chandler, J.M.; Duncan, P.; Rooney, E.; Fox, M.; Guralnik, J.M. Physical Performance Measures in the Clinical Setting. J. Am. Geriatr. Soc. 2003, 51, 314–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Jang, I.-Y.; Jung, H.-W.; Park, H.; Lee, C.K.; Yu, S.S.; Lee, Y.S.; Lee, E.; Glynn, R.J.; Kim, D.H. A multicomponent frailty intervention for socioeconomically vulnerable older adults: A designed-delay study. Clin. Interv. Aging 2018, 13, 1799–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.-W.; Roh, H.; Cho, Y.; Jeong, J.; Shin, Y.; Lim, J.; Guralnik, J.M.; Park, J. Validation of a Multi–Sensor-Based Kiosk for Short Physical Performance Battery. J. Am. Geriatr. Soc. 2019, 67, 2605–2609. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-W.; Roh, H.-C.; Kim, S.-W.; Kim, S.; Kim, M.; Won, C.W. Cross-Comparisons of Gait Speeds by Automatic Sensors and a Stopwatch to Provide Converting Formula Between Measuring Modalities. Ann. Geriatr. Med. Res. 2019, 23, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Titus, J.A. The Hands-On XBee Lab Manual: Experiments that Teach You XBee Wirelesss Communications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Camara, S.; Alvarado, B.E.; Guralnik, J.M.; Guerra, R.; Maciel, C.C. Using the Short Physical Performance Battery to screen for frailty in young-old adults with distinct socioeconomic conditions. Geriatr. Gerontol. Int. 2012, 13, 421–428. [Google Scholar] [CrossRef]
- Cesari, M.; Pahor, M.; Lauretani, F.; Zamboni, V.; Bandinelli, S.; Bernabei, R.; Guralnik, J.M.; Ferrucci, L. Skeletal Muscle and Mortality Results from the InCHIANTI Study. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2009, 64, 377–384. [Google Scholar] [CrossRef]
- Volpato, S.; Cavalieri, M.; Sioulis, F.; Guerra, G.; Maraldi, C.; Zuliani, G.; Fellin, R.; Guralnik, J.M. Predictive Value of the Short Physical Performance Battery Following Hospitalization in Older Patients. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2010, 66, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Stookey, A.D.; Katzel, L.I.; Steinbrenner, G.; Shaughnessy, M.; Ivey, F.M. The Short Physical Performance Battery as a Predictor of Functional Capacity after Stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; on behalf of the SPRINTT Consortium; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Collamati, A.; D’Angelo, E.; Pahor, M.; et al. Sarcopenia: An overview. Aging Clin. Exp. Res. 2017, 29, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Rooks, D.; Swan, T.; Goswami, B.; Filosa, L.A.; Bunte, O.; Panchaud, N.; Coleman, L.A.; Miller, R.R.; Garayoa, E.G.; Praestgaard, J.; et al. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults: A randomized clinical trial. JAMA Netw. Open 2020, 3, e2020836. [Google Scholar] [CrossRef] [PubMed]
Total | Male | Female | p Value | |
---|---|---|---|---|
Sample size, n (%) | 124 (100) | 47 (37.9) | 77 (62.1) | NA |
Age, median (IQR) | 78 (73,82) | 78 (72,83) | 78 (73,82) | 0.775 |
BMI kg/m2, median (IQR) | 24 (22,27) | 24 (22,25) | 25 (22,27) | 0.189 |
History of DM, n (%) | 47 (37.9) | 15 (31.9) | 32 (41.6) | 0.283 |
History of HTN, n (%) | 76 (61.3) | 25 (53.2) | 51 (66.2) | 0.148 |
History of stroke, n (%) | 10 (8.1) | 6 (12.8) | 4 (5.2) | 0.133 |
History of fall, n (%) | 18 (14.5) | 4 (8.5) | 14 (18.2) | 0.138 |
Sarcopenia, n (%) | 34 (27.4) | 13 (27.7) | 21 (27.3) | 0.963 |
MMSE, mean (SD) | 25.3 (3.9) | 25.8 (3.8) | 25.0 (4.0) | 0.347 |
SPPB total score, mean (SD) | 9.9 (2.4) | 10.4 (2.3) | 9.7 (2.4) | 0.09 |
SPPB total duration, s, median (IQR) | 120 (104,139) | 114 (101,132) | 122 (105,144) | 0.097 |
Balance test duration, s, median (IQR) | 59 (55,68) | 59 (54,65) | 60 (55,70) | 0.278 |
Gait speed measure duration, s, median (IQR) | 32 (27,39) | 30 (26,39) | 35 (28,40) | 0.105 |
Sit-to-stand test duration, s, median (IQR) | 25 (17,36) | 22 (16,32) | 26 (17,36) | 0.253 |
Polypharmacy, n (%) | 76 (61.3) | 30 (63.8) | 46 (59.7) | 0.650 |
eSPPB Score Cut-Off | eSPPB Score | eQPPB Score Cut-Off | eQPPB Score | ||
---|---|---|---|---|---|
Sen | Spe | Sen | Spe | ||
≤12 | 100.0% | 0.0% | |||
≤11 | 91.2% | 54.4% | |||
≤10 | 85.3% | 66.7% | ≤7 | 100.0% | 0.0% |
≤9 | 70.6% | 83.3% | ≤6 | 91.2% | 65.6% |
≤8 | 64.7% | 88.9% | ≤5 | 76.5% | 82.2% |
≤7 | 44.1% | 91.1% | ≤4 | 55.9% | 88.9% |
≤6 | 32.4% | 95.6% | ≤3 | 50.0% | 93.3% |
≤5 | 20.6% | 97.8% | ≤2 | 26.5% | 94.4% |
≤4 | 8.9% | 100.0% | ≤1 | 11.8% | 100.0% |
<4 | 0.0% | 100.0% | <1 | 0.0% | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.M.; Jung, H.-W.; Jang, I.-Y.; Baek, J.Y.; Yoon, S.; Roh, H.; Lee, E. Comparison of Two Electronic Physical Performance Batteries by Measurement Time and Sarcopenia Classification. Sensors 2021, 21, 5147. https://doi.org/10.3390/s21155147
Park CM, Jung H-W, Jang I-Y, Baek JY, Yoon S, Roh H, Lee E. Comparison of Two Electronic Physical Performance Batteries by Measurement Time and Sarcopenia Classification. Sensors. 2021; 21(15):5147. https://doi.org/10.3390/s21155147
Chicago/Turabian StylePark, Chan Mi, Hee-Won Jung, Il-Young Jang, Ji Yeon Baek, Seongjun Yoon, Hyunchul Roh, and Eunju Lee. 2021. "Comparison of Two Electronic Physical Performance Batteries by Measurement Time and Sarcopenia Classification" Sensors 21, no. 15: 5147. https://doi.org/10.3390/s21155147
APA StylePark, C. M., Jung, H.-W., Jang, I.-Y., Baek, J. Y., Yoon, S., Roh, H., & Lee, E. (2021). Comparison of Two Electronic Physical Performance Batteries by Measurement Time and Sarcopenia Classification. Sensors, 21(15), 5147. https://doi.org/10.3390/s21155147