LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices
Abstract
:1. Introduction
2. Background: Enabling Technologies
2.1. Communications: Low-Power Long-Range Transmissions
2.2. Embedded Intelligence: ML-Based Mechanisms
2.2.1. On-Device Intelligent Mechanisms
2.2.2. Distributed Intelligent Mechanisms
3. Discussion: The Future of Wearables
3.1. Evolved Wearables Applications
3.2. Challenges
3.2.1. Energy Constraints
3.2.2. Computing Limitations and Device Heterogeneity
3.2.3. Data Security
4. Use case
4.1. Device Architecture
4.2. Implementation
4.3. Experiment Details
4.4. Results
4.4.1. LPWAN Communications
4.4.2. TinyML Integration
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dian, F.J.; Vahidnia, R.; Rahmati, A. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey. IEEE Access 2020, 8, 69200–69211. [Google Scholar] [CrossRef]
- Zhou, Q.; Fang, B.; Shan, J.; Sun, F.; Guo, D. A Survey of the Development of Wearable Devices. In Proceedings of the 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp. 198–203. [Google Scholar]
- Qaim, W.B.; Ometov, A.; Molinaro, A.; Lener, I.; Campolo, C.; Lohan, E.S.; Nurmi, J. Towards Energy Efficiency in the Internet of Wearable Things: A Systematic Review. IEEE Access 2020, 8, 175412–175435. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Cano, M.D. State of the art in LP-WAN solutions for industrial IoT services. Sensors 2016, 16, 708. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Sanchez-Gomez, J.; Ballesta-Viñas, J.; Cano, M.D.; Skarmeta, A. Performance Evaluation of LoRa Considering Scenario Conditions. Sensors 2018, 18, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits Syst. Mag. 2020, 20, 4–18. [Google Scholar] [CrossRef]
- Lim, W.Y.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, W.; Samhat, A.E.; Nouvel, F.; Mroue, M.; Prevotet, J.C. Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility. IEEE Commun. Surv. Tutor. 2019, 21, 1561–1581. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Liao, C.H.; Sakdejayont, T.; Lai, I.W.; Narusue, Y.; Morikawa, H. Improving the Capacity of a Mesh LoRa Network by Spreading-Factor-Based Network Clustering. IEEE Access 2019, 7, 21584–21596. [Google Scholar] [CrossRef]
- Sanchez-Gomez, J.; Gallego-Madrid, J.; Sanchez-Iborra, R.; Skarmeta, A.F. Performance study of LoRaWAN for smart-city applications. In Proceedings of the IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 58–62. [Google Scholar]
- Sanchez-Gomez, J.; Gallego-Madrid, J.; Sanchez-Iborra, R.; Santa, J.; Skarmeta Gómez, A.F. Impact of SCHC Compression and Fragmentation in LPWAN: A Case Study with LoRaWAN. Sensors 2020, 20, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warden, P.; Situnayake, D. Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019; ISBN 978-1492052043. [Google Scholar]
- Iqbal, W.; Abbas, H.; Daneshmand, M.; Rauf, B.; Bangash, Y.A. An In-Depth Analysis of IoT Security Requirements, Challenges, and Their Countermeasures via Software-Defined Security. IEEE Internet Things J. 2020, 7, 10250–10276. [Google Scholar] [CrossRef]
- Ye, Y.; Li, S.; Liu, F.; Tang, Y.; Hu, W. EdgeFed: Optimized Federated Learning Based on Edge Computing. IEEE Access 2020, 8, 209191–209198. [Google Scholar] [CrossRef]
- Zhou, C.; Fu, A.; Yu, S.; Yang, W.; Wang, H.; Zhang, Y. Privacy-Preserving Federated Learning in Fog Computing. IEEE Internet Things J. 2020, 7, 10782–10793. [Google Scholar] [CrossRef]
- Badawy, W.; Ahmed, A.; Sharf, S.; Elhamied, R.A.; Mekky, M.; Elhamied, M.A. On Flashing over the Air “FOTA” for IoT Appliances—An ATMEL Prototype. In Proceedings of the IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 9–11 November 2020; pp. 1–5. [Google Scholar]
- Ortega-Zamorano, F.; Jerez, J.M.; Munoz, D.U.; Luque-Baena, R.M.; Franco, L. Efficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, C.; Dimitrakopoulos, K.; Fafoutis, X.; Jacobsson, M. Towards battery-free LPWAN wearables. In Proceedings of the 7th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems—ENSsys’19, New York, NY, USA, 10 November 2019; ACM Press: New York, NY, USA, 2019; pp. 52–53. [Google Scholar]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Salatto, R.W.; Manning, J.W.; DeBeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE 2020, 15, e0238569. [Google Scholar] [CrossRef]
- Nithya, N.; Nallavan, G. Role of Wearables in Sports based on Activity recognition and biometric parameters: A Survey. In Proceedings of the International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 1700–1705. [Google Scholar]
- Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human Activity Recognition Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey. IEEE Access 2020, 8, 210816–210836. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; de Godoy Peixoto, D.; Islam, B.; Islam, M.T.; Nirjon, S.; Kinget, P.R.; Jiang, X. Improving Pedestrian Safety in Cities Using Intelligent Wearable Systems. IEEE Internet Things J. 2019, 6, 7497–7514. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Uma, S.; Bhuvanya, R.; Suresh, A. A demand for wearable devices in health care. Int. J. Eng. Technol. 2018, 7, 9377. [Google Scholar] [CrossRef] [Green Version]
- Catherwood, P.A.; Rafferty, J.A.; Mccomb, S.; McLaughlin, J.W. LPWAN Wearable Intelligent Healthcare Monitoring for Heart Failure Prevention. In Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI), Belfast, Northern Ireland, 4–6 July 2018; pp. 1–4. [Google Scholar]
- Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14. [Google Scholar] [CrossRef]
- Omoogun, M.; Ramsurrun, V.; Guness, S.; Seeam, P.; Bellekens, X.; Seeam, A. Critical patient eHealth monitoring system using wearable sensors. In Proceedings of the 1st International Conference on Next Generation Computing Applications (NextComp), Mauritius, 19–21 July 2017; pp. 169–174. [Google Scholar]
- Bayo-Monton, J.L.; Martinez-Millana, A.; Han, W.; Fernandez-Llatas, C.; Sun, Y.; Traver, V. Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors 2018, 18, 1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanaj, E.; Disha, D.; Spinsante, S.; Gambi, E. A Wearable Fall Detection System based on LoRa LPWAN Technology. J. Commun. Softw. Syst. 2020, 16, 232–242. [Google Scholar] [CrossRef]
- Petäjäjärvi, J.; Mikhaylov, K.; Yasmin, R.; Hämäläinen, M.; Iinatti, J. Evaluation of LoRa LPWAN Technology for Indoor Remote Health and Wellbeing Monitoring. Int. J. Wirel. Inf. Netw. 2017, 24, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Usama, M.; Xiao, W.; Ahmad, B.; Wan, J.; Hassan, M.M.; Alelaiwi, A. Deep Learning Based Weighted Feature Fusion Approach for Sentiment Analysis. IEEE Access 2019, 7, 140252–140260. [Google Scholar] [CrossRef]
- Nemati, S.; Ghassemi, M.M.; Clifford, G.D. Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2978–2981. [Google Scholar]
- Chakraborty, S.; Bhadra, A.; Mondal, S.; Prasad, S.; Chakraborty, S. An Intelligent and Smart Belt for the Blind People. In Advances in Smart Communication Technology and Information Processing. Lecture Notes in Networks and Systems; Banerjee, S., Mandal, J.K., Eds.; Springer: Singapore, 2021; pp. 307–316. ISBN 978-981-15-9432-8. [Google Scholar]
- Lakkhanawannakun, P.; Noyunsan, C. Speech Recognition using Deep Learning. In Proceedings of the 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea, 23–26 June 2019; pp. 1–4. [Google Scholar]
- Huang, J.; Zhou, W.; Li, H.; Li, W. Attention-Based 3D-CNNs for Large-Vocabulary Sign Language Recognition. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 2822–2832. [Google Scholar] [CrossRef]
- Montuwy, A.; Cahour, B.; Dommes, A. Using Sensory Wearable Devices to Navigate the City: Effectiveness and User Experience in Older Pedestrians. Multimodal Technol. Interact. 2019, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Salmela, E.; Vimm, I. Digital Smart Jewelry: Next Revolution of Jewelry Industry? In Digital Transformation in Smart Manufacturing; Petrillo, A., Cioffi, R., De Felice, F., Eds.; InTechOpen Limited: London, UK, 2018. [Google Scholar]
- Park, K.B.; Kim, M.; Choi, S.H.; Lee, J.Y. Deep learning-based smart task assistance in wearable augmented reality. Robot. Comput. Integr. Manuf. 2020, 63, 101887. [Google Scholar] [CrossRef]
- Danielsson, O.; Holm, M.; Syberfeldt, A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J. Ind. Inf. Integr. 2020, 20, 100175. [Google Scholar] [CrossRef]
- Gallardo, L.F.; Sanchez-Iborra, R. On the impact of voice encoding and transmission on the predictions of speaker warmth and attractiveness. ACM Trans. Knowl. Discov. Data 2019, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Litvak, E.; Kuflik, T. Enhancing cultural heritage outdoor experience with augmented-reality smart glasses. Pers. Ubiquitous Comput. 2020, 24, 873–886. [Google Scholar] [CrossRef]
- Sheykhivand, S.; Mousavi, Z.; Rezaii, T.Y.; Farzamnia, A. Recognizing Emotions Evoked by Music Using CNN-LSTM Networks on EEG Signals. IEEE Access 2020, 8, 139332–139345. [Google Scholar] [CrossRef]
- Wadhwani, P.; Gankar, S. Smart Clothing Market Size by Product (T-Shirts, Pants, Shoes, Undergarments, Jackets, Socks), by Application (Sports & Fitness, Healthcare, Military & Defense, Industrial, Entertainment), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2017–2024; Global Market Insights, Inc.: Selbyville, DE, USA, 2017. [Google Scholar]
- Rajan, G.; Morgan, J.J.; Murphy, C.; Torres Alonso, E.; Wade, J.; Ott, A.K.; Russo, S.; Alves, H.; Craciun, M.F.; Neves, A.I. Low Operating Voltage Carbon–Graphene Hybrid E-textile for Temperature Sensing. ACS Appl. Mater. Interfaces 2020, 12, 29861–29867. [Google Scholar] [CrossRef]
- Kurz, W.; Yetisen, A.K.; Kaito, M.V.; Fuchter, M.J.; Jakobi, M.; Elsner, M.; Koch, A.W. UV-Sensitive Wearable Devices for Colorimetric Monitoring of UV Exposure. Adv. Opt. Mater. 2020, 8, 1901969. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Chalmers, A.N. Review of Wearable and Portable Sensors for Monitoring Personal Solar UV Exposure. Ann. Biomed. Eng. 2021, 49, 964–978. [Google Scholar] [CrossRef]
- Ferreira, A.G.; Fernandes, D.; Branco, S.; Monteiro, J.L.; Cabral, J.; Catarino, A.P.; Rocha, A.M. A smart wearable system for sudden infant death syndrome monitoring. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 1920–1925. [Google Scholar]
- Park, G.; Cha, H.; Choi, S. Haptic Enchanters: Attachable and Detachable Vibrotactile Modules and Their Advantages. IEEE Trans. Haptics 2019, 12, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Eibensteiner, F.; Peterka, J.; Knaack, P. Pressure sensitive shoe insoles and socks for rehabilitation applications. In Proceedings of the IEEE 12th International Conference on Application of Information and Communication Technologies (AICT), Almaty, Kazakhstan, 17–19 October 2018; pp. 1–6. [Google Scholar]
- Stavropoulos, T.G.; Papastergiou, A.; Mpaltadoros, L.; Nikolopoulos, S.; Kompatsiaris, I. IoT Wearable Sensors and Devices in Elderly Care: A Literature Review. Sensors 2020, 20, 2826. [Google Scholar] [CrossRef]
- Sakhnini, N.; Yu, J.E.; Jones, R.M.; Chattopadhyay, D. Personal Air Pollution Monitoring Technologies: User Practices and Preferences. In HCI International 2020—Late Breaking Papers: User Experience Design and Case Studies. HCII 2020. Lecture Notes in Computer Science; Stephanidism, C., Marcus, A., Rosenzweig, E., Rau, P.P., Moallem, A., Rauterberg, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 481–498. [Google Scholar]
- Proto, A.; Peter, L.; Cerny, M.; Penhaker, M.; Bibbo, D.; Conforto, S.; Schmid, M. Human Body Energy Harvesting Solutions for Wearable Technologies. In Proceedings of the IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, Czech Republic, 17–20 September 2018; pp. 1–5. [Google Scholar]
- Perera, M.; Haller, A.; Rodríguez Méndez, S.J.; Adcock, M. HDGI: A Human Device Gesture Interaction Ontology for the Internet of Things. In International Semantic Web Conference; Springer Nature: Basingstoke, UK, 2020; pp. 111–126. [Google Scholar]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef]
- Beach, C.; Casson, A.J. Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Energy Harvesting at the Foot. IEEE Access 2020, 8, 208136–208148. [Google Scholar] [CrossRef]
- Mayer, P.; Magno, M.; Benini, L. A Low Power and Smart Power Unit for Kinetic Self-Sustainable Wearable Devices. In Proceedings of the 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020; pp. 1–4. [Google Scholar]
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M.H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F.M.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743. [Google Scholar] [CrossRef]
- Sung, G.M.; Chung, C.K.; Lai, Y.J.; Syu, J.Y. Small-Area Radiofrequency-Energy-Harvesting Integrated Circuits for Powering Wireless Sensor Networks. Sensors 2019, 19, 1754. [Google Scholar] [CrossRef] [Green Version]
- Poveda-Garcia, M.; Oliva-Sanchez, J.; Sanchez-Iborra, R.; Canete-Rebenaque, D.; Gomez-Tornero, J.L. Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming. IEEE Access 2019, 7, 8081–8094. [Google Scholar] [CrossRef]
- Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A Survey on the Computation Offloading Approaches in Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. J. Grid Comput. 2020, 18, 639–671. [Google Scholar] [CrossRef]
- Santa, J.; Fernández, P.J.; Sanchez-Iborra, R.; Ortiz, J.; Skarmeta, A.F. Offloading positioning onto network edge. Wirel. Commun. Mob. Comput. 2018, 2018, 7868796. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Z.; Yang, L.T.; Deen, M.J.; Wang, Z.J. Deep Semantic Mapping for Heterogeneous Multimedia Transfer Learning Using Co-Occurrence Data. ACM Trans. Multimed. Comput. Commun. Appl. 2019, 15, 1–21. [Google Scholar] [CrossRef]
- Fersi, G. Fog computing and Internet of Things in one building block: A survey and an overview of interacting technologies. Cluster Comput. 2021, in press. [Google Scholar] [CrossRef]
- Banbury, C.R.; Reddi, V.J.; Lam, M.; Fu, W.; Fazel, A.; Holleman, J.; Huang, X.; Hurtado, R.; Kanter, D.; Lokhmotov, A.; et al. Benchmarking TinyML Systems: Challenges and Direction. In Proceedings of the 1st International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware—3rd Conference on Machine Learning and Systems (MLSys), Austin, TX, USA, 4 March 2020. [Google Scholar]
- Sanchez-Iborra, R.; Sanchez-Gomez, J.; Santa, J.; Fernandez, P.J.; Skarmeta, A.F. IPv6 communications over LoRa for future IoV services. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 92–97. [Google Scholar]
- Sanchez-Iborra, R.; Sánchez-Gómez, J.; Pérez, S.; Fernández, P.J.; Santa, J.; Hernández-Ramos, J.L.; Skarmeta, A. Enhancing LoRaWAN security through a lightweight and authenticated key management approach. Sensors 2018, 18, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Gomez, J.; Carrillo, D.G.; Sanchez-Iborra, R.; Hernandez-Ramos, J.L.; Granjal, J.; Marin-Perez, R.; Zamora-Izquierdo, M.A. Integrating LPWAN Technologies in the 5G Ecosystem: A Survey on Security Challenges and Solutions. IEEE Access 2020, 8, 216437–216460. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Diao, W.; Li, Z.; Zhang, K. When Good Becomes Evil. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; ACM: New York, NY, USA, 2015; pp. 1273–1285. [Google Scholar]
- Wang, C.; Guo, X.; Wang, Y.; Chen, Y.; Liu, B. Friend or Foe? In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an China, 30 May–3 June 2016; ACM: New York, NY, USA, 2016; pp. 189–200. [Google Scholar]
- Brichetto, A.; Criollo-C, S.; Jaramillo-Alcázar, Á.; Luján-Mora, S. Wearable Devices Information Security: An Overview. In Artificial Intelligence, Computer and Software Engineering Advances. CIT 2020. Advances in Intelligent Systems and Computing; Botto-Tobar, M., Cruz, H., Díaz Cadena, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 316–327. [Google Scholar]
- Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Zhou, X.; Demetriou, S.; Wang, X.; Gunter, C.A. Inside Job: Understanding and Mitigating the Threat of External Device Mis-Bonding on Android. In Proceedings of the 2014 Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2014; Internet Society: Reston, VA, USA, 2014. [Google Scholar]
- Sanchez-Gomez, J.; Garcia-Carrillo, D.; Marin-Perez, R.; Sanchez-Iborra, R.; Gomez, A.F. Secure bootstrapping and header compression for IoT constrained networks. In Proceedings of the Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1–6. [Google Scholar]
- Bianchi, A.; Oakley, I. Wearable authentication: Trends and opportunities. It-Inf. Technol. 2016, 58, 255–262. [Google Scholar] [CrossRef]
- Casale, P.; Pujol, O.; Radeva, P. Personalization and user verification in wearable systems using biometric walking patterns. Pers. Ubiquitous Comput. 2012, 16, 563–580. [Google Scholar] [CrossRef]
- Banbury, C.; Zhou, C.; Fedorov, I.; Matas, R.; Thakker, U.; Gope, D.; Janapa Reddi, V.; Mattina, M.; Whatmough, P. Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers. In Proceedings of the Machine Learning and Systems 3 (MLSys’21); ATTN: Indio, CA, USA, 2021; pp. 1–16. [Google Scholar]
Uplink | Downlink | |
---|---|---|
Indoor | 92.7% | 92.4% |
Outdoor | 97.8% | 96.15% |
Layers\Neurons per Layer | 2 | 5 | 10 | 15 |
1 | Peripherals: 20,812 B TinyML: 2490 B Total: 72.2% | Peripherals: 20,812 B TinyML: 2550 B Total: 72.4% | Peripherals: 20,812 B TinyML: 2650 B Total: 72.7% | Peripherals: 20,812 B TinyML: 2750 B Total: 73% |
2 | Peripherals: 20,812 B TinyML: 2514 B Total: 72.3% | Peripherals: 20,812 B TinyML: 2586 B Total: 72.5% | Peripherals: 20,812 B TinyML: 2706 B Total: 72.9% | Peripherals: 20,812 B TinyML: 2826 B Total: 73.2% |
3 | Peripherals: 20,812 B TinyML: 2538 B Total: 72.3% | Peripherals: 20,812 B TinyML: 2622 B Total: 72.5% | Peripherals: 20,812 B TinyML: 2762 B Total: 73% | Peripherals: 20,812 B TinyML: 2902 B Total: 73.5% |
4 | Peripherals: 20,812 B TinyML: 2562 B Total: 72.4% | Peripherals: 20,812 B TinyML: 2658 B Total: 72.7% | Peripherals: 20,812 B TinyML: 2818 B Total: 73.2% | Peripherals: 20,812 BTinyML: 2978 BTotal: 73.7% |
5 | Peripherals: 20,812 B TinyML: 2586 B Total: 72.5% | Peripherals: 20,812 B TinyML: 2694 B Total: 72.8% | Peripherals: 20,812 B TinyML: 2874 B Total: 73.4% | Peripherals: 20,812 B TinyML: 3054 B Total: 74% |
Layers\Neurons per Layer | 2 | 5 | 10 | 15 |
1 | Peripherals: 1333 B TinyML: 162 B Total: 73% | Peripherals: 1333 B TinyML: 238 B Total: 76.7% | Peripherals: 1333 B TinyML: 378 B Total: 83.5% | Peripherals: 1333 B TinyML: 518 B Total: 90.4% |
2 | Peripherals: 1333 B TinyML: 186 B Total: 74.1% | Peripherals: 1333 B TinyML: 274 B Total: 78.4% | Peripherals: 1333 B TinyML: 424 B Total: 86.2% | Peripherals: 1333 B TinyML: 594 B Total: 94% |
3 | Peripherals: 1333 B TinyML: 210 B Total: 75.3% | Peripherals: 1333 B TinyML: 310 B Total: 80.2% | Peripherals: 1333 B TinyML: 490 B Total: 89% | Peripherals: 1333 B TinyML: 670 B Total: 97.8% |
4 | Peripherals: 1333 B TinyML: 242 B Total: 76.9% | Peripherals: 1333 B TinyML: 346 B Total: 81.9% | Peripherals: 1333 B TinyML:546 B Total: 91.7% | Peripherals: 1333 B TinyML: 746 B Total: 101.5% |
5 | Peripherals: 1333 B TinyML: 274 B Total: 78.4% | Peripherals: 1333 B TinyML: 382 B Total: 83.7% | Peripherals: 1333 B TinyML: 602 B Total: 94.4% | Peripherals: 1333 B TinyML: 822 B Total: 105.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Iborra, R. LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices. Sensors 2021, 21, 5218. https://doi.org/10.3390/s21155218
Sanchez-Iborra R. LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices. Sensors. 2021; 21(15):5218. https://doi.org/10.3390/s21155218
Chicago/Turabian StyleSanchez-Iborra, Ramon. 2021. "LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices" Sensors 21, no. 15: 5218. https://doi.org/10.3390/s21155218
APA StyleSanchez-Iborra, R. (2021). LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices. Sensors, 21(15), 5218. https://doi.org/10.3390/s21155218