Modelling and Differential Quantification of Electric Cell-Substrate Impedance Sensing Growth Curves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture, Information and Growing Conditions of the Used Cell Lines
2.2. Impedance Measurement and General Experimental Settings
2.3. IPEC-J2 Dilution Experiments and Cell Counting on ECIS Dishes
2.4. IPEC-J2 Ethanol Treatment
2.5. ECIS Data Analysis with the Developed ECIS R Scripts
2.6. Growth Curve Models, Area under the Curve (AUC) and Further Statistics
3. Results
3.1. Curve Fitting and Further Statistics
3.2. IPEC-J2 Dilution Experiments and Cell Counting on ECIS Dishes
3.3. Ethanol Treatment of IPEC-J2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aarestrup, F.M.; Seyfarth, A.M.; Emborg, H.-D.; Pedersen, K.; Hendriksen, R.S.; Bager, F. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 2001, 45, 2054–2059. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.P. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 1993, 13, 25–31. [Google Scholar] [CrossRef]
- Murdoch, W.W. Population regulation in theory and practice. Ecology 1994, 75, 271–287. [Google Scholar] [CrossRef]
- Studer, L.; Csete, M.; Lee, S.-H.; Kabbani, N.; Walikonis, J.; Wold, B.; McKay, R. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 2000, 20, 7377–7383. [Google Scholar] [CrossRef]
- Ginzburg, L.R. The theory of population dynamics: I. Back to first principles. J. Theor. Biol. 1986, 122, 385–399. [Google Scholar] [CrossRef]
- Govantes, F. Serial dilution-based growth curves and growth curve synchronization for high-resolution time series of bacterial biofilm growth. In Host-Pathogen Interactions; Methods in Molecular Biology; Medina, C., López-Baena, F.J., Eds.; Springer: New York, NY, USA, 2018; Volume 1734, pp. 159–169. ISBN 978-1-4939-7603-4. [Google Scholar]
- Kilian, H.G.; Bartkowiak, D.; Kaufmann, D.; Kemkemer, R. The general growth logistics of cell populations. Cell Biochem. Biophys. 2008, 51, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, M.; Katano, H.; Shimozaki, Y.; Sanami, S.; Ozeki, N.; Koga, H.; Sekiya, I. Time-lapse image analysis for whole colony growth curves and daily distribution of the cell number per colony during the expansion of mesenchymal stem cells. Sci. Rep. 2019, 9, 16835. [Google Scholar] [CrossRef]
- Mori, E.; Menchetti, M.; Cantini, M.; Bruni, G.; Santini, G.; Bertolino, S. Twenty years’ monitoring of a population of Italiancrested newts Triturus carnifex: Strong site fidelityand shifting population structure in response torestoration. Ethol. Ecol. Evol. 2017, 29, 460–473. [Google Scholar] [CrossRef]
- Pereira, T.F.; Levin, G.; DeOcesano-Pereira, C.; Caodaglio, A.S.; Fujita, A.; Tonso, A.; Sogayar, M.C. Fluorescence-based method is more accurate than counting-based methods for plotting growth curves of adherent cells. BMC Res. Notes 2020, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Bruelheide, H.; Scheidel, U. Slug herbivory as a limiting factor for the geographical range of Arnica montana. J. Ecol. 1999, 87, 839–848. [Google Scholar] [CrossRef]
- Eberhardt, L.L.; Breiwick, J.M. Models for population growth curves. ISRN Ecol. 2012, 2012, 815016. [Google Scholar] [CrossRef] [Green Version]
- Reile, H.; Birnböck, H.; Bernhardt, G.; Spruß, T.; Schönenberger, H. Computerized determination of growth kinetic curves and doubling times from cells in microculture. Anal. Biochem. 1990, 187, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Bacher, M.G.; Fenton, O.; Bondi, G.; Creamer, R.E.; Karmarkar, M.; Schmidt, O. The impact of cattle dung pats on earthworm distribution in grazed pastures. BMC Ecol. 2018, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Belsky, A.J. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J. Veg. Sci. 1992, 3, 187–200. [Google Scholar] [CrossRef]
- Assanga, I. Cell growth curves for different cell lines and their relationship with biological activities. Int. J. Biotechnol. Mol. Biol. Res. 2013, 4, 60–70. [Google Scholar] [CrossRef]
- Eberhardt, L.L.; Breiwick, J.M.; Demaster, D.P. Analyzing population growth curves. Oikos 2008, 117, 1240–1246. [Google Scholar] [CrossRef]
- Sprouffske, K.; Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016, 17, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damgaard, C.; Weiner, J.; Nagashima, H. Modelling individual growth and competition in plant populations: Growth Curves of Chenopodium album at two densities. J. Ecol. 2002, 90, 666–671. [Google Scholar] [CrossRef] [Green Version]
- ISO 20391-1:2018. Biotechnology—Cell Counting—Part 1: General Guidance on Cell Counting Methods; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Gericke, M.; Weyer, U.; Braune, J.; Bechmann, I.; Eilers, J. A Method for long-term live imaging of tissue macrophages in adipose tissue explants. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E1023–E1033. [Google Scholar] [CrossRef] [Green Version]
- Giaever, I.; Keese, C.R. A Morphological biosensor for mammalian cells. Nature 1993, 366, 591–592. [Google Scholar] [CrossRef]
- Hamidi, H.; Lilja, J.; Ivaska, J. Using XCELLigence RTCA instrument to measure cell adhesion. Bio Protoc. 2017, 7, e2646. [Google Scholar] [CrossRef] [PubMed]
- García, E.; Pérez, P.; Olmo, A.; Díaz, R.; Huertas, G.; Yúfera, A. Data-analytics modeling of electrical impedance measurements for cell culture monitoring. Sensors 2019, 19, 4639. [Google Scholar] [CrossRef] [Green Version]
- Daza, P.; Olmo, A.; Cañete, D.; Yúfera, A. Monitoring living cell assays with bio-impedance sensors. Sens. Actuators B Chem. 2013, 176, 605–610. [Google Scholar] [CrossRef]
- Huang, X.; Nguyen, D.; Greve, D.W.; Domach, M.M. Simulation of microelectrode impedance changes due to cell growth. IEEE Sens. J. 2004, 4, 576–583. [Google Scholar] [CrossRef]
- Atienzar, F.A.; Tilmant, K.; Gerets, H.H.; Toussaint, G.; Speeckaert, S.; Hanon, E.; Depelchin, O.; Dhalluin, S. The use of real-time cell analyzer technology in drug discovery: Defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J. Biomol. Screen. 2011, 16, 575–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.; Lachance, B.; Sunahara, G.; Luong, J.H.T. An in-depth analysis of electric cell−substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal. Chem. 2002, 74, 1333–1339. [Google Scholar] [CrossRef]
- Xiao, C.; Luong, J.H.T. A simple mathematical model for electric cell-substrate impedance sensing with extended applications. Biosens. Bioelectron. 2010, 25, 1774–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Saint, D.A. Validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 2002, 294, 347–353. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Reedy, T.J. Choosing near-linear parameters in the four-parameter logistic model for radioligand and related assays. Biometrics 1986, 42, 575. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Wild, C.J. Nonlinear Regression; Wiley Series in Probability and Statistics; Wiley-Interscience: Hoboken, NJ, USA, 2003; ISBN 978-0-471-47135-6. [Google Scholar]
- Muggeo, V.M.R. Segmented: An R Package to fit regression models with broken-line relationships. R News 2008, 8, 20–25. [Google Scholar]
- Ritz, C.; Spiess, A.-N. QpcR: An R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 2008, 24, 1549–1551. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Pfaffl, M.W.; Zhao, S.; Spiess, A.N.; Boggy, G.; Blom, J.; Rutledge, R.G.; Sisti, D.; Lievens, A.; De Preter, K.; et al. Evaluation of QPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods 2013, 59, 32–46. [Google Scholar] [CrossRef]
- DeLean, A.; Munson, P.J.; Rodbard, D. Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol. Endocrinol. Metab. 1978, 235, E97. [Google Scholar] [CrossRef] [Green Version]
- Giaever, I.; Keese, C.R. Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. USA 1991, 88, 7896–7900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolwijk, J.A.; Matrougui, K.; Renken, C.W.; Trebak, M. Impedance analysis of GPCR-mediated changes in endothelial barrier function: Overview and fundamental considerations for stable and reproducible measurements. Pflugers Arch. Eur. J. Physiol. 2015, 467, 2193–2218. [Google Scholar] [CrossRef] [Green Version]
- Asai, K.; Buurman, W.A.; Reutelingsperger, C.P.M.; Schutte, B.; Kaminishi, M. Low concentrations of ethanol induce apoptosis in human intestinal cells. Scand. J. Gastroenterol. 2003, 38, 1154–1161. [Google Scholar] [CrossRef]
- Asai, K.; Buurman, W.A.; Reutelingsperger, C.P.M.; Schutte, B.; Kaminishi, M. Modular effects of estradiol on ethanol-induced apoptosis in human intestinal epithelial cells. Scand. J. Gastroenterol. 2005, 40, 326–335. [Google Scholar] [CrossRef]
- Castilla, R. Dual effect of ethanol on cell death in primary culture of human and rat hepatocytes. Alcohol Alcohol. 2004, 39, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Le, T.-D.; Do, T.A.T.; Yu, R.; Yoo, H. Ethanol elicits inhibitory effect on the growth and proliferation of tongue carcinoma cells by inducing cell cycle arrest. Korean J. Physiol. Pharmacol. 2012, 16, 153. [Google Scholar] [CrossRef] [Green Version]
- Elzhov, T.V.; Mullen, K.M.; Spiess, A.-N.; Bolker, B. Minpack.Lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5978&rep=rep1&type=pdf (accessed on 31 May 2021).
- Curran, J.M. Bolstad2: Bolstad Functions. 2013. Available online: https://cran.r-project.org/web/packages/Bolstad2/Bolstad2.pdf (accessed on 31 May 2021).
- Gagnon, R.C. Estimation of confidence intervals for area under the curve from destructively obtained pharmacokinetic data. J. Pharmacokinet. Pharmacodyn. 1998, 26, 87–102. [Google Scholar] [CrossRef]
- Houston, J.B. Drug metabolite kinetics. Pharmacol. Ther. 1981, 15, 521–552. [Google Scholar] [CrossRef]
- Purves, R.D. Optimum numerical integration methods for estimation of Area-under-the-Curve (AUC) and Area-under-the-Moment-Curve (AUMC). J. Pharmacokinet. Biopharm. 1992, 20, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, K.; Nakagawa, T.; Uno, T. Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm. 1978, 6, 547–558. [Google Scholar] [CrossRef]
- Yeh, K.C.; Small, R.D. Pharmacokinetic evaluation of stable piecewise cubic polynomials as numerical integration functions. J. Pharmacokinet. Biopharm. 1989, 17, 721–740. [Google Scholar] [CrossRef]
- Smyth, G.K. Numerical integration. In Encyclopedia of Biostatistics; Armitage, P., Colton, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2005; p. b2a14026. ISBN 978-0-470-84907-1. [Google Scholar]
- Wagenmakers, E.-J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef]
- Ngoc Le, H.T.; Kim, J.; Park, J.; Cho, S. A review of electrical impedance characterization of cells for label-free and real-time assays. BioChip J. 2019, 13, 295–305. [Google Scholar] [CrossRef]
- Witzel, F.; Fritsche-Guenther, R.; Lehmann, N.; Sieber, A.; Blüthgen, N. Analysis of impedance-based cellular growth assays. Bioinformatics 2015, 31, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
Function Name | Brief Description |
---|---|
getECIS | Import of raw ECIS .xlsx files into the R data frame |
plotECIS | Plotting of ECIS datasets in a variety of ways |
cutECIS | Cutting of time ranges from ECIS datasets |
delECIS | Deletion of specific wells from ECIS datasets |
selECIS | Selection of ECIS wells to form a new dataset |
addECIS | Combination of two or more different ECIS datasets |
baseECIS | Subtraction of the baseline value of each specific well |
normECIS | Normalization of ECIS datasets to (0, 1) |
intECIS | Numerical integration of the area under the curve [44] |
fitECIS | Calculation of different curve models and features from ECIS datasets as described in Section 2.6 |
parECIS | Getting all the parameters acquired by fitECIS |
extECIS | Removal and extension of the leading region of ECIS data |
anoECIS | Identification and deletion of outliers of an ECIS dataset |
setECIS | Setting of a start point of an experiment to zero |
Cut, 6 h | Cut, Plateau | |||||||
---|---|---|---|---|---|---|---|---|
Spl | Log | Seg | AUC | Spl | Log | Seg | AUC | |
Y0 | 42.86 | 43.71 | 42.87 | 21.26 | 18.38 | 19.28 | ||
Yb | 39.65 | 40.93 | 40.98 | 14.64 | 15.8 | 16.15 | ||
k | 0.000063 | 0.000035 | 0.000031 | 0.000083 | 0.000033 | 0.000052 | ||
Ymax | 3.89 | 2.04 | ||||||
a | 0.471 | 2.56 | ||||||
b | 0.00008 | 0.00014 | ||||||
RMSE | 0.089 | 0.11 | 0.075 | 0.1 | 0.096 | 0.097 | 0.099 | 0.056 |
RV | 0.0097 | 0.015 | 0.0068 | 0.013 | 0.011 | 0.012 | 0.012 | 0.0037 |
R2 | 0.967 | 0.964 | 0.966 | 0.96 | 0.984 | 0.969 | 0.967 | 0.99 |
AIC | −24.11 | −17.26 | −29.71 | −20.07 | −21.5 | −21.33 | −20.74 | −39.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, A.R.D.; Spiess, A.-N.; Pfaffl, M.W. Modelling and Differential Quantification of Electric Cell-Substrate Impedance Sensing Growth Curves. Sensors 2021, 21, 5286. https://doi.org/10.3390/s21165286
Binder ARD, Spiess A-N, Pfaffl MW. Modelling and Differential Quantification of Electric Cell-Substrate Impedance Sensing Growth Curves. Sensors. 2021; 21(16):5286. https://doi.org/10.3390/s21165286
Chicago/Turabian StyleBinder, Anna Ronja Dorothea, Andrej-Nikolai Spiess, and Michael W. Pfaffl. 2021. "Modelling and Differential Quantification of Electric Cell-Substrate Impedance Sensing Growth Curves" Sensors 21, no. 16: 5286. https://doi.org/10.3390/s21165286