Automated Bowel Sound Analysis: An Overview
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. 1950s–1960s
3.2. 1970s
3.3. 1980s
3.4. 1990s
3.5. Thessaloniki Group
3.6. Nancy Group
3.7. Yamanashi/Tokyo Group
3.8. Jeonju Group
3.9. Tokushima Group
3.10. Los Angeles Group
3.11. Perth Group—The Noisy Guts Project
3.12. Other Recent Technological Developments
3.13. Recent Clinical and Translational Progress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cannon, W.B. Auscultation of the rhythmic sounds produced by the stomach and intestines. Am. J. Physiol. Leg. Content 1905, 14, 339–353. [Google Scholar] [CrossRef]
- Liu, C.J.; Huang, S.C.; Chen, H.I. Oscillating gas bubbles as the origin of bowel sounds: A combined acoustic and imaging study. Chin. J. Physiol. 2010, 53, 245–253. [Google Scholar] [CrossRef]
- Fox, M.R.; Kahrilas, P.J.; Roman, S.; Gyawali, C.P.; Scott, S.M.; Rao, S.S.; Keller, J.; Camilleri, M. International working group for disorders of gastrointestinal motility and function clinical measurement of gastrointestinal motility and function: Who, when and which test? Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Durup-Dickenson, M.; Christensen, M.K.; Gade, J. Abdominal auscultation does not provide clear clinical diagnoses. Dan. Med. J. 2013, 60, A4620. [Google Scholar]
- Felder, S.; Margel, D.; Murrell, Z.; Fleshner, P. Usefulness of bowel sound auscultation: A prospective evaluation. J. Surg. Educ. 2014, 71, 768–773. [Google Scholar] [CrossRef]
- Allwood, G.; Du, X.; Webberley, K.M.; Osseiran, A.; Marshall, B.J. Advances in acoustic signal processing techniques for enhanced bowel sound analysis. IEEE Rev. Biomed. Eng. 2019, 12, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Zaborski, D.; Halczak, M.; Grzesiak, W.; Modrzejewski, A. Recording and analysis of bowel sounds. Euroasian J. Hepato Gastroenterol. 2015, 5, 67–73. [Google Scholar] [CrossRef]
- Spiegel, B.M.R.; Kaneshiro, M.; Russell, M.M.; Lin, A.; Patel, A.; Tashjian, V.C.; Zegarski, V.; Singh, D.; Cohen, S.E.; Reid, M.W.; et al. Validation of an acoustic gastrointestinal surveillance biosensor for postoperative ileus. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2014, 18, 1795–1803. [Google Scholar] [CrossRef]
- Kaneshiro, M.; Kaiser, W.; Pourmorady, J.; Fleshner, P.; Russell, M.; Zaghiyan, K.; Lin, A.; Martinez, B.; Patel, A.; Nguyen, A.; et al. Postoperative gastrointestinal telemetry with an acoustic biosensor predicts ileus vs. uneventful GI recovery. J. Gastrointest. Surg. 2016, 20, 132–139. [Google Scholar] [CrossRef]
- Farrar, J.T.; Ingelfinger, F.J. Gastrointestinal motility as revealed by study of abdominal sounds. Gastroenterology 1955, 29, 789–802. [Google Scholar] [CrossRef]
- Milton, G.W.; Clunie, G.J.A. The bowel sounds in cases of haematemesis and melaena. Aust. N. Z. J. Surg. 1958, 28, 42–44. [Google Scholar] [CrossRef]
- Sprung, H.B. On the registration of normal and pathological small intestine motility with the intestinal sound. Langenbecks Arch. Klin. Chir. Ver. Mit Dtsch. Z. Chir. 1959, 292, 537–540. [Google Scholar]
- Sprung, H.B.; Roisch, R. On registration of small intestine motility with the intestinal sound. Gastroenterologia 1960, 93, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.G. The measurement of intestinal sounds in man and their relationship to serum 5-hydroxytryptamine. Gut 1961, 2, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardenne, V.; MIelke, H.; Reitnauer, P.G. The current status of the technic and use of the ingestable intestinal sound. [Der gegenwaertige stand von methodik und anwendung der verschluckbaren intestinalsender]. Dtsch. Gesundh. 1964, 19, 810–816. [Google Scholar]
- Benintendi, V.; Guindani, M.; Manganelli, R. Presentation of an apparatus which registers abdominal sounds (abdominal phonoregistrator) [Presentazione di un apparecchio atto a registrare i rumori dell’addome (“fonoregistratore addominale”)]. Minerva Chir. 1965, 20, 792–793. [Google Scholar]
- Garclay, G.A.; Solman, A.J.; Wade, M.J. Apparatus to record bowel sounds and intestinal pressures. J. Physiol. 1967, 188, 5P–6P. [Google Scholar]
- Watson, W.C.; Knox, E.C. Phonoenterography: The recording and analysis of bowel sounds. Gut 1967, 8, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Dalle, D.; Devroede, G.; Thibault, R.; Perrault, J. Computer analysis of bowel sounds. Comput. Biol. Med. 1975, 4, 247–256. [Google Scholar] [CrossRef]
- Paskuda, P.; Birk, M.; St, V.S. Frequency analysis of bowel sounds—A clinical study concerning the possibility of the diagnosis and the localisation of ileus [Frequenzanalyse der darmgerausche. versuch der diagnose und lokalisation des ileus]. Med. Welt 1979, 30, 687–688. [Google Scholar]
- Vasseur, C.; Devroede, G.; Dalle, D.; Van Houtte, N.; Bastin, E.; Thibault, R. Postprandial Bowel Sounds. IEEE Trans. Biomed. Eng. 1975, BME-22, 443–448. [Google Scholar] [CrossRef]
- Politzer, J.-P.; Devroede, G.; Vasseur, C.; Gerard, J.; Thibault, R. The Genesis of bowel sounds: Influence of viscus and gastrointestinal content. Gastroenterology 1976, 71, 282–285. [Google Scholar] [CrossRef]
- Sakurai, K.; Ito, H. Bowel sound characteristics of new borns. Nippon Shokakibyo Gakkai Zasshi 1980, 77, 355–360. [Google Scholar] [CrossRef]
- Shekhvatov, L.D. The importance of phonoenterography in the diagnosis of acute ileus. Khirurgiya 1980, 56, 37–41. [Google Scholar]
- Serniak, P.S.; Denisov, V.K.; Shirokov, V.S.; Prityka, A.P. Importance of phonoenterography for the diagnosis of acute kidney failure [Znachenie fonoénterografii dlia raspoznavaniia ostroǐ pochechnoǐ nedostatochnosti]. Vracebnoe Delo Kiev 1982, 23–25. [Google Scholar]
- Arnobjornsson, E.; Bengmark, S. Auscultation of bowel sounds in patients with suspected acute appendicitis—An aid in the diagnosis? Preliminary results. Eur. Surg. Res. 1983, 15, 24–27. [Google Scholar]
- Hansen, W.E.; Haslinger, F. Measurement of pre- and postprandial bowel sounds with an electronic analyzer [Untersuchung der pra- und postprandialen bauchgerausche mit einem elektronischen analysator]. Z. Gastroenterol. 1984, 22, 88–93. [Google Scholar] [PubMed]
- Mainugin, V.V.; Bereznyak, I.A.; Shirokov, V.S.; Prityko, A.P.; Kol’tsov, V.P. Phonoenterography in childhood. Biomed. Eng. 1988, 22, 23–27. [Google Scholar] [CrossRef]
- Radnitz, C.L.; Blanchard, E.B. Bowel sound biofeedback as a treatment for irritable bowel syndrome. Biofeedback Self Regul. 1988, 13, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Radnitz, C.L.; Blanchard, E.B. A 1- and 2-year follow-up study of bowel sound biofeedback as a treatment for irritable bowel syndrome. Biofeedback Self Regul. 1989, 14, 333–338. [Google Scholar] [CrossRef]
- Garner, C.G.; Ehrenreich, H. Non-invasive topographic analysis of intestinal activity in man on the basis of acustic phenomena. Res. Exp. Med. 1989, 189, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Abe, Y.; Yoshino, T.; Ohsato, K. Clinical application of spectral analysis of bowel sounds in intestinal obstruction. Dis. Colon Rectum 1990, 33, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Petrowicz, O.; Muller, K.; Hansen, W.E.; Eichmeier, J.; Blumel, G. Critical review and new aspects of noise analysis for gastrointestinal motility determination. In Proceedings of the Annual Conference on Engineering in Medicine and Biology, Orlando, FL, USA, 31 October–3 November 1991; IEEE: Piscataway, NJ, USA, 1991; Volume 13, pp. 492–493. [Google Scholar]
- Sugrue, M.; Redfern, M. Computerized phonoenterography: The clinical investigation of a new system. J. Clin. Gastroenterol. 1994, 18, 139–144. [Google Scholar] [CrossRef]
- Bray, D.; Reilly, R.B.; Haskin, L.; McCormack, B. Assessing motility through abdominal sound monitoring. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 30 October—2 November 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 6, pp. 2398–2400. [Google Scholar]
- Hu, Y.; Liu, W.H.; Ye, T.; Wang, M. Gathering and analyzing of intestinal sounds. Chin. J. Biomed. Eng. 1995, 14, 266–275. [Google Scholar]
- Sandler, R.H.; Mansy, H.A.; Kimura, R.A.; Uhing, M.R.; Arango, V. Computerized analysis of bowel sounds in normal and small bowel obstructed rats. J. Pediatr. Gastroenterol. Nutr. 1996, 23, 369. [Google Scholar] [CrossRef]
- Mansy, H.A.; Sandler, R.H. Bowel-sound signal enhancement using adaptive filtering. IEEE Eng. Med. Biol. Mag. Q. Mag. Eng. Med. Biol. Soc. 1997, 16, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Mansy, H.A.; Sandler, R.H. Detection and analysis of gastrointestinal sounds in normal and small bowel obstructed rats. Med. Biol. Eng. Comput. 2000, 38, 42–48. [Google Scholar] [CrossRef]
- Craine, B.L.; Silpa, M.; O’Toole, C.J. Computerized auscultation applied to irritable bowel syndrome. Dig. Dis. Sci. 1999, 44, 1887–1892. [Google Scholar] [CrossRef]
- Hadjileontiadis, L.J.; Kontakos, T.P.; Liatsos, C.N.; Mavrogiannis, C.C.; Rokkas, T.A.; Panas, S.M. Enhancement of the diagnostic character of bowel sounds using higher-order crossings. In Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, Atlanta, GA, USA, 13–16 October 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2, p. 1027. [Google Scholar]
- Hadjileontiadis, L.J.; Liatsos, C.N.; Mavrogiannis, C.C.; Rokkas, T.A.; Panas, S.M. Enhancement of bowel sounds by wavelet-based filtering. IEEE Trans. Biomed. Eng. 2000, 47, 876–886. [Google Scholar] [CrossRef]
- Hadjileontiadis, L.J.; Rekanos, I.T. Enhancement of explosive bowel sounds using kurtosis-based filtering. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 17–21 September 2003; pp. 2479–2482. [Google Scholar]
- Hadjileontiadis, L.J.; Rekanos, I.T. Detection of explosive lung and bowel sounds by means of fractal dimension. IEEE Signal Process. Lett. 2003, 10, 311–316. [Google Scholar] [CrossRef]
- Hadjileontiadis, L.J. Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding—Part II: Application results. IEEE Trans. Biomed. Eng. 2005, 52, 1050–1064. [Google Scholar] [CrossRef]
- Hadjileontiadis, L.J. Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding—Part I: Methodology. IEEE Trans. Biomed. Eng. 2005, 52, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Rekanos, I.T.; Hadjileontiadis, L.J. An iterative kurtosis-based technique for the detection of nonstationary bioacoustic signals. Signal Process. 2006, 86, 3787–3795. [Google Scholar] [CrossRef]
- Dimoulas, C.; Kalliris, G.; Papanikolaou, G.; Kalampakas, A. Novel wavelet domain wiener filtering de-noising techniques: Application to bowel sounds captured by means of abdominal surface vibrations. Biomed. Signal Process. Control 2006, 1, 177–218. [Google Scholar] [CrossRef]
- Dimoulas, C.; Kalliris, G.; Papanikolaou, G.; Kalampakas, A. Long-term signal detection, segmentation and summarization using wavelets and fractal dimension: A bioacoustics application in gastrointestinal-motility monitoring. Comput. Biol. Med. 2007, 37, 438–462. [Google Scholar] [CrossRef]
- Dimoulas, C.; Kalliris, G.; Papanikolaou, G.; Petridis, V.; Kalampakas, A. Bowel-sound pattern analysis using wavelets and neural networks with application to long-term, unsupervised, gastrointestinal motility monitoring. Expert Syst. Appl. 2008, 34, 26–41. [Google Scholar] [CrossRef]
- Dimoulas, C.A.; Papanikolaou, G.V.; Petridis, V. Pattern classification and audiovisual content management techniques using hybrid expert systems: A video-assisted bioacoustics application in abdominal sounds pattern analysis. Expert Syst. Appl. 2011, 38, 13082–13093. [Google Scholar] [CrossRef]
- Dimoulas, C.A. Audiovisual spatial-audio analysis by means of sound localization and imaging: A multimedia healthcare framework in abdominal sound mapping. IEEE Trans. Multimed. 2016, 18, 1969–1976. [Google Scholar] [CrossRef]
- Ranta, R.; Heinrich, C.; Louis-Dorr, V.; Wolf, D.; Guillemin, F. Wavelet-based bowel sounds denoising, segmentation and characterization. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 1903–1906. [Google Scholar]
- Ranta, R.; Louis-Dorr, V.; Heinrich, C.; Wolf, D.; Guillemin, F. Towards an acoustic map of abdominal activity. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 17–21 September 2003; pp. 2769–2772. [Google Scholar]
- Ranta, R.; Louis-Dorr, V.; Heinrich, C.; Wolf, D.; Guillemin, F. Principal component analysis and interpretation of bowel sounds. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 26 I, pp. 227–230. [Google Scholar]
- Ranta, R.; Louis-Dorr, V.; Heinrich, C.; Wolf, D.; Guillemin, F. Digestive activity evaluation by multichannel abdominal sounds analysis. IEEE Trans. Biomed. Eng. 2010, 57, 1507–1519. [Google Scholar] [CrossRef]
- Louis-Dorr, V. Contribution au Traitement et à L’analyse de Signaux Issus de Processus Physiologiques. Ph.D. Thesis, Institut National Polytechnique de Lorraine—INPL, Vandœuvre-lès-Nancy, France, 2008. [Google Scholar]
- Sakata, O.; Kaneko, S.; Tange, S.; Suzuki, S.; Satake, T. Evaluation of food quality based on digestive activities of small intestine—Analysis of bowel sound and automatic detective system of bowel sounds. Jpn. J. Food Eng. 2004, 5, 113–119. [Google Scholar] [CrossRef]
- Sakata, O.; Togawa, Y.; Kaneko, S.; Satake, T. Evaluation of food qualiity based on digestive activities of small intestine—Accuracy of bowel sound detection by multidimensional signal processing. Jpn. J. Food Eng. 2008, 9, 51–57. [Google Scholar] [CrossRef]
- Sakata, O.; Satake, T. Integration of different types of biological signals—Bowel sound and salivary amylase. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting 2010, Pittsburgh, PA, USA, 20–23 June 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; Volume 7, pp. 5397–5401. [Google Scholar]
- Sakata, O.; Matsuda, K.; Suzuki, Y.; Satake, T. Basic study of occurrence frequency of bowel sounds after food ingestion. In Proceedings of the IEEE Region 10 Annual International Conference, Bali, Indonesia, 21–24 November 2011; pp. 1203–1206. [Google Scholar]
- Sakata, O.; Suzuki, Y.; Matsuda, K.; Satake, T. Temporal changes in occurrence frequency of bowel sounds both in fasting state and after eating. J. Artif. Organs 2013, 16, 83–90. [Google Scholar] [CrossRef]
- Goto, J.; Matsuda, K.; Harii, N.; Moriguchi, T.; Yanagisawa, M.; Sakata, O. Usefulness of a real-time bowel sound analysis system in patients with severe sepsis (pilot study). J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs 2015, 18, 86–91. [Google Scholar] [CrossRef]
- Yamada, Y.; Sakata, O. Improved method of detecting bowel sounds for automatic long analysis under noisy environments. In Proceedings of the Tenth International Conference on Signal Processing Systems, Singapore, 16–18 November 2018; Mao, K., Jiang, X., Eds.; SPIE: Singapore, 2019; p. 11. [Google Scholar]
- Ogino, Y.; Satoh, Y.; Sakata, O. Forecasting bowel sound occurrence frequency by SARIMA model. In Proceedings of the 2019 23rd International Computer Science and Engineering Conference (ICSEC), Phuket, Thailand, 30 October–1 November 2019; pp. 219–223. [Google Scholar]
- Kodani, K.; Sakata, O. Automatic bowel sound detection under cloth rubbing noise. In Proceedings of the 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 779–784. [Google Scholar]
- Yamada, Y.; Sakata, O.; Satoh, Y. Hybrid bowel sound measurement system combining microphones and a vibration sensor. In Proceedings of the 12th International Conference on Computer Modeling and Simulation, Brisbane, Australia, 22–24 June 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 175–179. [Google Scholar]
- Kim, K.S.; Seo, J.H.; Ryu, S.H.; Kim, M.H.; Song, C.G. Estimation algorithm of the bowel motility based on regression analysis of the jitter and shimmer of bowel sounds. Comput. Methods Programs Biomed. 2011, 104, 426–434. [Google Scholar] [CrossRef]
- Kim, K.-S.; Seo, J.-H.; Song, C.-G. Non-invasive algorithm for bowel motility estimation using a back-propagation neural network model of bowel sounds. Biomed. Eng. Online 2011, 10, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-S.; Park, H.-J.; Kang, H.S.; Song, C.-G. Awareness system for bowel motility estimation based on artificial neural network of bowel sounds. In Proceedings of the iCAST 2012—Proceedings: 4th International Conference on Awareness Science and Technology, Seoul, Korea, 21–24 August 2012; pp. 185–188. [Google Scholar]
- Emoto, T.; Shono, K.; Abeyratne, U.R.; Okahisa, T.; Yano, H.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. ARMA-based spectral bandwidth for evaluation of bowel motility by the analysis of bowel sounds. Physiol. Meas. 2013, 34, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Emoto, T.; Rabeyratne, U.; Gojima, Y.; Nanba, K.; Sogabe, M.; Okahisa, T.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. Evaluation of human bowel motility using non-contact microphones. Biomed. Phys. Eng. Express 2016, 2, 045012. [Google Scholar] [CrossRef]
- Shono, K.; Emoto, T.; Okahisa, T.; Abeyratne, U.R.; Yano, H.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. Automatic evaluation of gastrointestinal motor activity through the analysis of bowel sounds. in proceedings of the proceedings of the iasted international conference on biomedical engineering. BioMed 2013, 2013, 136–140. [Google Scholar]
- Sato, R.; Emoto, T.; Gojima, Y.; Akutagawa, M. Automatic bowel motility evaluation technique for noncontact sound recordings. Appl. Sci. Switz. 2018, 8, 999. [Google Scholar] [CrossRef] [Green Version]
- Inderjeeth, A.-J.; Webberley, K.M.; Muir, J.; Marshall, B.J. The potential of computerised analysis of bowel sounds for diagnosis of gastrointestinal conditions: A systematic review. Syst. Rev. 2018, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Allwood, G.; Webberley, K.M.; Osseiran, A.; Marshall, B.J. Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device. Sensors 2018, 18, 4240. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Allwood, G.; Webberley, K.M.; Osseiran, A.; Wan, W.; Volikova, A.; Marshall, B.J. A mathematical model of bowel sound generation. J. Acoust. Soc. Am. 2018, 144, EL485–EL491. [Google Scholar] [CrossRef]
- Du, X.; Allwood, G.; Webberley, K.; Inderjeeth, A.-J.; Osseiran, A.; Marshall, B. Noninvasive diagnosis of irritable bowel syndrome via bowel sound features: Proof of concept. Clin. Transl. Gastroenterol. 2019, 10, e00017. [Google Scholar] [CrossRef] [PubMed]
- Yuki, M.; Adachi, K.; Fujishiro, H.; Uchida, Y.; Miyaoka, Y.; Yoshino, N.; Yuki, T.; Ono, M.; Kinoshita, Y. Is a computerized bowel sound auscultation system useful for the detection of increased bowel motility? Am. J. Gastroenterol. 2002, 97, 1846–1848. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Park, H.; Choi, E.J.; Kim, Y.G.; Lee, S.I. Fasting and postprandial analysis of bowel sounds and plasma 5-hydroxytryptamine level. Korean J. Gastroenterol. Taehan Sohwagi Hakhoe Chi 2004, 44, 142–146. [Google Scholar] [PubMed]
- Safronov, B.G.; Shakhova, S.A.; Polyatykina, O.V.; Nazarov, S.B. Computer phonoenterography in the assessment of the motor-evacuatory function of the gastrointestinal tract in healthy children. Hum. Physiol. 2006, 32, 122–124. [Google Scholar] [CrossRef]
- Hill, J.M.; Regan, M.S.; Adrezin, R.S.; Eisenfeld, L. System for recording the bowel sounds of premature infants. In Proceedings of the 2008 3rd Frontiers in Biomedical Devices Conference and Exhibition, Irvine, CA, USA, 18–20 June 2008; pp. 37–38. [Google Scholar]
- Zhang, H.H.; Wu, B.M.; Zhuo, Y.; Zhang, L.Y.; Wang, X.L. Design of a bowel sounds acquisition system based on C8051F340 MCU. Zhongguo Yi Liao Qi Xie Za Zhi 2008, 32, 207–211. [Google Scholar]
- Zhang, H.; Wang, X.; Wu, B. Progress in detection, analysis and application of new techniques to monitoring bowel sounds. Shengwu Yixue Gongchengxue Zazhi 2009, 26, 908–911, 916. [Google Scholar]
- Chien, C.-H.; Huang, H.-T.; Wang, C.-Y.; Chong, F.-C. Two-dimensional static and dynamic display system of bowel sound magnitude map for evaluation of intestinal motility. Biomed. Eng. Appl. Basis Commun. 2009, 21, 333–342. [Google Scholar] [CrossRef]
- Delfini, A.T.; Troncon, L.E.A.; Baffa, O.; Oliveira, R.B.; Moraes, E.R. Digital auscultation and processing of abdominal sounds. In Proceedings of the IFMBE Proceedings, Munich, Germany, 7–12 September 2009; Volume 25, pp. 1400–1402. [Google Scholar]
- Tsai, C.-F.; Wu, T.-J.; Chao, Y.-M. Labview based bowel-sounds monitoring system in realtime. In Proceedings of the International Conference on Machine Learning and Cybernetics, Guilin, China, 10–13 July 2011; Volume 4, pp. 1815–1818. [Google Scholar]
- Chanu, O.R.; Karthik Raj, V. Acquisition and characterization of bowel sounds using labview software. Biomed. Eng. Appl. Basis Commun. 2018, 30, 1850006. [Google Scholar] [CrossRef]
- Li, M.; Yang, J.; Wang, X. Research on auto-identification method to the typical bowel sound signal. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–18 October 2011; Volume 2, pp. 845–849. [Google Scholar]
- Lin, B.-S.; Sheu, M.-J.; Chuang, C.-C.; Tseng, K.-C.; Chen, J.-Y. Enhancing bowel sounds by using a higher order statistics-based radial basis function network. IEEE J. Biomed. Health Inform. 2013, 17, 675–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulusar, U.D. Recovery of gastrointestinal tract motility detection using naive bayesian and minimum statistics. Comput. Biol. Med. 2014, 51, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Al Mamun, K.A.; Habib, M.H.U.; McFarlane, N.; Paul, N. A low power integrated bowel sound measurement system. In Proceedings of the Conference Record—IEEE Instrumentation and Measurement Technology Conference, Pisa, Italy, 11–14 May 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; Volume 2015, pp. 779–783. [Google Scholar]
- Mamun, K.A.A.; McFarlane, N. Integrated real time bowel sound detector for artificial pancreas systems. Sens. Bio-Sens. Res. 2016, 7, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Kumar, T.S.; Søiland, E.; Stavdahl, Ø.; Fougner, A.L. Pilot study of early meal onset detection from abdominal sounds. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar]
- Kölle, K.; Fougner, A.L.; Ellingsen, R.; Carlsen, S.M.; Stavdahl, Ø. Feasibility of early meal detection based on abdominal sound. IEEE J. Transl. Eng. Health Med. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Sheu, M.-J.; Lin, P.-Y.; Chen, J.-Y.; Lee, C.-C.; Lin, B.-S. Higher-order-statistics-based fractal dimension for noisy bowel sound detection. IEEE Signal Process. Lett. 2015, 22, 789–793. [Google Scholar] [CrossRef]
- Türk, E.; Öztaş, A.S.; Deniz Uluşar, U.; Canpolat, M.; Kazanir, S.; Yaprak, M.; Öǧünç, G.; Doǧru, V.; Canagir, O.C. Wireless bioacoustic sensor system for automatic detection of bowel sounds [Baǧirsak Seslerinin Otomatik Tespiti için Kablosuz Biyoakustik Sensör Sistemi]. In Proceedings of the 2015 19th National Biomedical Engineering Meeting, BIYOMUT 2015, Istanbul, Turkey, 5–6 November 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Öztaş, A.S.; Türk, E.; Uluşar, U.D.; Canpolat, M.; Yaprak, M.; Kazanir, S.; Öǧunç, G.; Doǧru, V.; Canagir, O.C. Bioacoustic sensor system for automatic detection of bowel sounds [Baǧirsak Seslerinin Otomatik Tespiti Için Biyoakustik Sensör Sistemi]. In Proceedings of the 2015 Medical Technologies National Conference, TIPTEKNO 2015, Bodrum, Turkey, 15–18 October 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Baronetto, A.; Graf, L.S.; Fischer, S.; Neurath, M.F.; Amft, O. GastroDigitalShirt: A smart shirt for digestion acoustics monitoring. In Proceedings of the 2020 International Symposium on Wearable Computers; Association for Computing Machinery: New York, NY, USA, 2020; pp. 17–21. [Google Scholar]
- Wang, G.; Wang, W.; Yu, L. Design and implementation of wearable multi-channel bowel sound recorder. Zhongguo Yi Liao Qi Xie Za Zhi 2016, 40, 176–179. [Google Scholar] [PubMed]
- Zhou, L.; Sun, Y.; Hua, S.; Li, Z.; Hao, D.; Hu, Y. Identification of bowel sound signal with spectral entropy method. In Proceedings of the 2015 IEEE 12th International Conference on Electronic Measurement and Instruments, ICEMI 2015, Qingdao, China, 16–18 July 2015; Juan, W.J.C., Ed.; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; Volume 2, pp. 798–802. [Google Scholar]
- Huang, Y.; Song, I.; Rana, P.; Koh, G. Fast diagnosis of bowel activities. In Proceedings of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2017, pp. 3042–3049. [Google Scholar]
- Yin, Y.; Yang, W.; Jiang, H.; Wang, Z. Bowel sound based digestion state recognition using artificial neural network. In Proceedings of the IEEE Biomedical Circuits and Systems Conference: Engineering for Healthy Minds and Able Bodies, BioCAS 2015, Atlanta, GA, USA, 22–24 October 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Yin, Y.; Jiang, H.; Yang, W.; Wang, Z. Intestinal motility assessment based on legendre fitting of logarithmic bowel sound spectrum. Electron. Lett. 2016, 52, 1364–1366. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, H.; Feng, S.; Liu, J.; Chen, P.; Zhu, B.; Wang, Z. Bowel sound recognition using svm classification in a wearable health monitoring system. Sci. China Inf. Sci. 2018, 61, 1–3. [Google Scholar] [CrossRef]
- Liu, J.; Yin, Y.; Jiang, H.; Kan, H.; Zhang, Z.; Chen, P.; Zhu, B.; Wang, Z. Bowel sound detection based on MFCC feature and LSTM neural network. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Wang, F.; Wu, D.; Jin, P.; Zhang, Y.; Yang, Y.; Ma, Y.; Yang, A.; Fu, J.; Feng, X. A Flexible skin-mounted wireless acoustic device for bowel sounds monitoring and evaluation. Sci. China Inf. Sci. 2019, 62, 202402. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Jiang, H.; Wang, Z.; Chen, P.; Zhu, B.; Duan, X. Long-term bowel sound monitoring and segmentation by wearable devices and convolutional neural networks. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 985–996. [Google Scholar] [CrossRef]
- Kölle, K.; Aftab, M.F.; Andersson, L.E.; Fougner, A.L.; Stavdahl, Ø. Data driven filtering of bowel sounds using multivariate empirical mode decomposition. Biomed. Eng. OnLine 2019, 18, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Montlouis, W. Bowel movement signal modeling and parameters extraction 2020. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Tokyo, Japan, 14–17 December 2020; pp. 963–967. [Google Scholar]
- Santamaría, J.I.; Vega, J.M.; Valverde, J.M.; Blesa, E. Study of intestinal motility in the child with acute appendicitis using phonoenterography [Estudio de la motilidad intestinal en el niño con apendicitis aguda mediante fonoenterografía]. Cir. Pediatr. Organo Off. Soc. Esp. Cir. Pediatr. 1993, 6, 117–119. [Google Scholar]
- Gu, Y.; Lim, H.J.; Moser, M.A.J. How useful are bowel sounds in assessing the abdomen? Dig. Surg. 2010, 27, 422–426. [Google Scholar] [CrossRef]
- Alshimemeri, A.; Sakkijha, M.; Haddad, S.; Arabi, Y. The value of bowel sound assessment in predicting feeding intolerance in critically ill patients. Crit. Care Shock 2011, 14, 65–69. [Google Scholar]
- van bree, S.; Prins, M.; Juffermans, N. Auscultation for bowel sounds in patients with ileus: An outdated practice in the ICU? Neth. J. Crit. Care 2018, 26, 142–146. [Google Scholar]
- Ozawa, T.; Saji, E.; Yajima, R.; Onodera, O.; Nishizawa, M. Reduced bowel sounds in Parkinson’s disease and multiple system atrophy patients. Clin. Auton. Res. 2011, 21, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Ching, S.S.; Tan, Y.K. Spectral analysis of bowel sounds in intestinal obstruction using an electronic stethoscope. World J. Gastroenterol. 2012, 18, 4585–4592. [Google Scholar] [CrossRef] [PubMed]
- Breum, B.M.; Rud, B.; Kirkegaard, T.; Nordentoft, T. Accuracy of abdominal auscultation for bowel obstruction. World J. Gastroenterol. 2015, 21, 10018–10024. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, J.-R.; Ma, Y.-L. Bowel sounds and monitoring gastrointestinal motility in critically ill patients. Clin. Nurse Spec. 2012, 26, 29–34. [Google Scholar] [CrossRef]
- Li, B.; Tang, S.; Ma, Y.-L.; Tang, J.; Wang, B.; Wang, J.-R. Analysis of bowel sounds application status for gastrointestinal function monitoring in the intensive care unit. Crit. Care Nurs. Q. 2014, 37, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Massey, R.L. Return of bowel sounds indicating an end of postoperative ileus: Is it time to cease this long-standing nursing tradition? Medsurg Nurs. Off. J. Acad. Med. Surg. Nurses 2012, 21, 146–150. [Google Scholar]
- Read, T.E.; Brozovich, M.; Andujar, J.E.; Ricciardi, R.; Caushaj, P.F. Bowel sounds are not associated with flatus, bowel movement, or tolerance of oral intake in patients after major abdominal surgery. Dis. Colon Rectum 2017, 60, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Deniz Ulusar, U.; Canpolat, M.; Yaprak, M.; Kazanir, S.; Ogunc, G. Real-time monitoring for recovery of gastrointestinal tract motility detection after abdominal surgery. In Proceedings of the AICT 2013—7th International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, 23–25 October 2013; IEEE Computer Society: Washington, DC, USA, 2013. [Google Scholar]
- Struble, J.; Moser, M.A.J. When are bowel sounds most reliable in the diagnosis of small bowel obstruction? Int. J. Clin. Ski. 2012, 6, 3–5. [Google Scholar]
- Dumas, J.; Hill, K.M.; Adrezin, R.S.; Alba, J.; Curry, R.; Campagna, E.; Fernandes, C.; Lamba, V.; Eisenfeld, L. Feasibility of an electronic stethoscope system for monitoring neonatal bowel sounds. Conn. Med. 2013, 77, 467–471. [Google Scholar] [PubMed]
- Morisawa, T.; Takahashi, T.; Nishi, S. Effects of passive lower limb and trunk exercises and diaphragm breathing exercise on intestinal movement. J. Phys. Ther. Sci. 2013, 25, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Morisawa, T.; Takahashi, T.; Sasanuma, N.; Mabuchi, S.; Takeda, K.; Hori, N.; Ohash, N.; Ide, T.; Domen, K.; Nishi, S. Passive exercise of the lower limbs and trunk alleviates decreased intestinal motility in patients in the intensive care unit after cardiovascular surgery. J. Phys. Ther. Sci. 2017, 29, 312–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusainov, R.K.; Makukha, V.K. Evaluation of the applicability of MEMS microphone for auscultation. In Proceedings of the International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM, Erlagol, Russia, 29 June–3 July 2015; IEEE Computer Society: Washington, DC, USA, 2015; Volume 2015, pp. 595–597. [Google Scholar]
- Mohnani, A.; Eisenfeld, L. Electronic stethoscope system for monitoring and analyzing bowel sounds in real-time. Conn. Med. 2018, 82, 401–405. [Google Scholar]
- Ortigoza, E.B.; Cagle, J.; Chien, J.-H.; Oh, S.; Brown, L.S.; Neu, J. Electrogastrography, near-infrared spectroscopy, and acoustics to measure gastrointestinal development in preterm babies. J. Pediatr. Gastroenterol. Nutr. 2018, 66, e146–e152. [Google Scholar] [CrossRef]
- Wang, G.; Wang, M.; Liu, H.; Zhao, S.; Liu, L.; Wang, W. Changes in bowel sounds of inpatients undergoing general anesthesia. Biomed. Eng. OnLine 2020, 19, 60. [Google Scholar] [CrossRef]
- Wang, G.; Wang, W.; Liu, H. Design and implementation of the performance test of our self-developed bowel sound recorder. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Huaqiao, China, 19–21 October 2019; pp. 1–5. [Google Scholar]
Group Home City | Examples of BS Research Techniques | |
---|---|---|
Antalya, Turkey | Naïve Bayesian classifier, minimum statistics and spectral subtraction | [91] |
Beijing, China (multiple groups) | Convolutional neural networks, Legendre fitting, support vector machines, wavelet decomposition | [103,104,105,106] |
Chengdu, China | Spectral entropy analysis | [101] |
Jeonju, Korea | Regression analysis of BS shimmer and jitter, back-propagation neural network | [68,69,70] |
Los Angeles, CA, USA | Bayesian classification, frequency-based counting | [8,9] |
Nancy, France | Unsupervised denoising | [53,54,55,56] |
Perth, Australia | Neural network: logistic regression–based machine learning | [76,77,78] |
Saloniki, Greece | Wavelet transform-based stationary-nonstationary filter, higher-order crossings, kurtosis-based and fractal dimension analysis, neural networks | [41,42,43,44,45,46,47,48,49,50,51,52] |
Singapore | Gaussian Hamming distance | [102] |
Szczecin, Poland | Adjustable grids | [7] |
Tainan, Taiwan | Higher-order-statistics fractal dimension | [96] |
Tokushima, Japan | Autoregressive moving average spectrum | [71,72,73,74] |
Tokyo, Japan | Independent component analysis with wavelet filtering, seasonal autoregressive integrated moving average | [58,59,60,61,62,63,64,65,66,67] |
Trondheim, Norway | Intrinsic mode function-fractal dimension | [109] |
Group Home City | Accuracy | Years (Publications) |
---|---|---|
Saloniki, Greece | 95% | 1999–2011 |
Tokushima, Japan | 91% | 2013–2018 |
Antalya, Turkey | 94% | 2014 |
California, USA | 83% | 2014–2016 |
Beijing, China | 92% | 2018–2019 |
Perth, Australia | 87% | 2018–2020 |
Trondheim, Norway | 75% | 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, J.K.; Nowak, R.; Radzikowski, K.; Grulkowski, I.; Walkowiak, J. Automated Bowel Sound Analysis: An Overview. Sensors 2021, 21, 5294. https://doi.org/10.3390/s21165294
Nowak JK, Nowak R, Radzikowski K, Grulkowski I, Walkowiak J. Automated Bowel Sound Analysis: An Overview. Sensors. 2021; 21(16):5294. https://doi.org/10.3390/s21165294
Chicago/Turabian StyleNowak, Jan Krzysztof, Robert Nowak, Kacper Radzikowski, Ireneusz Grulkowski, and Jaroslaw Walkowiak. 2021. "Automated Bowel Sound Analysis: An Overview" Sensors 21, no. 16: 5294. https://doi.org/10.3390/s21165294
APA StyleNowak, J. K., Nowak, R., Radzikowski, K., Grulkowski, I., & Walkowiak, J. (2021). Automated Bowel Sound Analysis: An Overview. Sensors, 21(16), 5294. https://doi.org/10.3390/s21165294